Weil representation and β -extensions

Corinne Blondel[1]

  • [1] C.N.R.S. - Institut de Mathématiques de Jussieu - UMR 7586 Université Paris 7 Groupes, représentations et géométrie - Case 7012 75205 Paris Cedex 13 (France)

Annales de l’institut Fourier (2012)

  • Volume: 62, Issue: 4, page 1319-1366
  • ISSN: 0373-0956

Abstract

top
We study β -extensions in a p -adic classical group and we produce a relation between some β -extensions by means of a Weil representation. We apply this to the study of reducibility points of some parabolically induced representations.

How to cite

top

Blondel, Corinne. "Représentation de Weil et $\beta $-extensions." Annales de l’institut Fourier 62.4 (2012): 1319-1366. <http://eudml.org/doc/251112>.

@article{Blondel2012,
abstract = {Nous étudions les $\beta $-extensions dans un groupe classique $p$-adique et obtenons une relation entre certaines $\beta $-extensions à l’aide d’une représentation de Weil. Nous en donnons une application à l’étude des points de réductibilité de certaines induites paraboliques.},
affiliation = {C.N.R.S. - Institut de Mathématiques de Jussieu - UMR 7586 Université Paris 7 Groupes, représentations et géométrie - Case 7012 75205 Paris Cedex 13 (France)},
author = {Blondel, Corinne},
journal = {Annales de l’institut Fourier},
keywords = {Local non-archimedean field; classical group; Weil representation; beta-extension; semi-simple type; semi-simple character; cover; Hecke algebra; reducibility points},
language = {fre},
number = {4},
pages = {1319-1366},
publisher = {Association des Annales de l’institut Fourier},
title = {Représentation de Weil et $\beta $-extensions},
url = {http://eudml.org/doc/251112},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Blondel, Corinne
TI - Représentation de Weil et $\beta $-extensions
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 4
SP - 1319
EP - 1366
AB - Nous étudions les $\beta $-extensions dans un groupe classique $p$-adique et obtenons une relation entre certaines $\beta $-extensions à l’aide d’une représentation de Weil. Nous en donnons une application à l’étude des points de réductibilité de certaines induites paraboliques.
LA - fre
KW - Local non-archimedean field; classical group; Weil representation; beta-extension; semi-simple type; semi-simple character; cover; Hecke algebra; reducibility points
UR - http://eudml.org/doc/251112
ER -

References

top
  1. L. Blasco, C. Blondel, Algèbres de Hecke et séries principales généralisées de S p 4 ( F ) , Proc. London Math. Soc. 85(3) (2002), 659-685 Zbl1017.22010MR1936816
  2. C. Blondel, Sp(2N)-covers for self-contragredient supercuspidal representations of GL(N), Ann. scient. Ec. Norm. Sup. 37 (2004), 533-558 Zbl1063.22016MR2097892
  3. C. Blondel, Covers and propagation in symplectic groups, 48 (2007), 16-31, Univ. Aarhus Zbl1139.22013MR2349437
  4. C. Blondel, S. Stevens, Genericity of supercuspidal representations of p -adic Sp 4 , Compositio Math. 145(1) (2009), 213-246 Zbl1217.22013MR2480501
  5. C.J. Bushnell, P.C. Kutzko, The admissible dual of GL ( N ) via compact open subgroups, (1993), Annals of Mathematics Studies 129, Princeton Zbl0787.22016MR1204652
  6. C.J. Bushnell, P. Kutzko, Smooth representations of reductive p -adic groups : structure theory via types, Proc. London Math. Soc. 77 (1998), 582-634 Zbl0911.22014MR1643417
  7. C.J. Bushnell, P. Kutzko, Semisimple types in GL n , Compositio Math. 119 (1999), 53-97 Zbl0933.22027MR1711578
  8. W.T. Gan, S. Takeda, The Local Langlands Conjecture for S p ( 4 ) , Int. Math. Res. Not. 2010 (2010), 2987-3038 Zbl1239.11061MR2673717
  9. P. Gérardin, Weil representations associated to finite fields, J. of Algebra 46 (1977), 54-101 Zbl0359.20008MR460477
  10. D. Goldberg, P. Kutzko, S. Stevens, Covers for self-dual supercuspidal representations of the Siegel Levi subgroup of classical p-adic groups, Int. Math. Res. Not. 2007 (2007) Zbl1133.22010MR2376206
  11. R. Howlett, G. Lehrer, Induced cuspidal representations and generalised Hecke rings, Invent. Math. 58 (1980), 37-64 Zbl0435.20023MR570873
  12. C. Jantzen, Discrete series for p -adic SO ( 2 n ) and restrictions of representations of O ( 2 n )  Zbl1219.22016
  13. P. Kutzko, L. Morris, Level zero Hecke algebras and parabolic induction : the Siegel case for split classical groups, Int. Math. Res. Not. 2006 (2006) Zbl1115.22013MR2276353
  14. C. Mœglin, Normalisation des opérateurs d’entrelacement et réductibilité des induites de cuspidales ; le cas des groupes classiques p-adiques, Ann. of Math. 151 (2000), 817-847 Zbl0956.22012MR1765711
  15. L. Morris, Tamely ramified intertwining algebras, Ann. of Math. 114 (1993), 1-54 Zbl0854.22022MR1235019
  16. M. Neuhauser, An explicit construction of the metaplectic representation over a finite field, J. of Lie Theory 12 (2002), 15-30 Zbl1026.22018MR1885034
  17. F. Shahidi, A proof of Langlands conjecture on Plancherel measure ; complementary series for p-adic groups, Ann. of Math. 132 (1990), 273-330 Zbl0780.22005MR1070599
  18. A. Silberger, Special representations of reductive p-adic groups are not integrable, Ann. of Math. 111 (1980), 571-587 Zbl0437.22015MR577138
  19. S. Stevens, Double coset decomposition and intertwining, manuscripta math. 106 (2001), 349-364 Zbl0988.22008MR1869226
  20. S. Stevens, Semisimple characters for p -adic classical groups, Duke Math. J. 127(1) (2005), 123-173 Zbl1063.22018MR2126498
  21. S. Stevens, The supercuspidal representations of p -adic classical groups, Invent. Math. 172 (2008), 289-352 Zbl1140.22016MR2390287
  22. F. Szechtman, Weil representations of the symplectic group, J. of Algebra 208 (1998), 662-686 Zbl0932.20047MR1655472
  23. Y. Zhang, Discrete series of classical groups, Canad. J. Math. 52(5) (2000), 1101-1120 Zbl0961.22013MR1782340

NotesEmbed ?

top

You must be logged in to post comments.