Weil representation and β -extensions

Corinne Blondel[1]

  • [1] C.N.R.S. - Institut de Mathématiques de Jussieu - UMR 7586 Université Paris 7 Groupes, représentations et géométrie - Case 7012 75205 Paris Cedex 13 (France)

Annales de l’institut Fourier (2012)

  • Volume: 62, Issue: 4, page 1319-1366
  • ISSN: 0373-0956

Abstract

top
We study β -extensions in a p -adic classical group and we produce a relation between some β -extensions by means of a Weil representation. We apply this to the study of reducibility points of some parabolically induced representations.

How to cite

top

Blondel, Corinne. "Représentation de Weil et $\beta $-extensions." Annales de l’institut Fourier 62.4 (2012): 1319-1366. <http://eudml.org/doc/251112>.

@article{Blondel2012,
abstract = {Nous étudions les $\beta $-extensions dans un groupe classique $p$-adique et obtenons une relation entre certaines $\beta $-extensions à l’aide d’une représentation de Weil. Nous en donnons une application à l’étude des points de réductibilité de certaines induites paraboliques.},
affiliation = {C.N.R.S. - Institut de Mathématiques de Jussieu - UMR 7586 Université Paris 7 Groupes, représentations et géométrie - Case 7012 75205 Paris Cedex 13 (France)},
author = {Blondel, Corinne},
journal = {Annales de l’institut Fourier},
keywords = {Local non-archimedean field; classical group; Weil representation; beta-extension; semi-simple type; semi-simple character; cover; Hecke algebra; reducibility points},
language = {fre},
number = {4},
pages = {1319-1366},
publisher = {Association des Annales de l’institut Fourier},
title = {Représentation de Weil et $\beta $-extensions},
url = {http://eudml.org/doc/251112},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Blondel, Corinne
TI - Représentation de Weil et $\beta $-extensions
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 4
SP - 1319
EP - 1366
AB - Nous étudions les $\beta $-extensions dans un groupe classique $p$-adique et obtenons une relation entre certaines $\beta $-extensions à l’aide d’une représentation de Weil. Nous en donnons une application à l’étude des points de réductibilité de certaines induites paraboliques.
LA - fre
KW - Local non-archimedean field; classical group; Weil representation; beta-extension; semi-simple type; semi-simple character; cover; Hecke algebra; reducibility points
UR - http://eudml.org/doc/251112
ER -

References

top
  1. L. Blasco, C. Blondel, Algèbres de Hecke et séries principales généralisées de S p 4 ( F ) , Proc. London Math. Soc. 85(3) (2002), 659-685 Zbl1017.22010MR1936816
  2. C. Blondel, Sp(2N)-covers for self-contragredient supercuspidal representations of GL(N), Ann. scient. Ec. Norm. Sup. 37 (2004), 533-558 Zbl1063.22016MR2097892
  3. C. Blondel, Covers and propagation in symplectic groups, 48 (2007), 16-31, Univ. Aarhus Zbl1139.22013MR2349437
  4. C. Blondel, S. Stevens, Genericity of supercuspidal representations of p -adic Sp 4 , Compositio Math. 145(1) (2009), 213-246 Zbl1217.22013MR2480501
  5. C.J. Bushnell, P.C. Kutzko, The admissible dual of GL ( N ) via compact open subgroups, (1993), Annals of Mathematics Studies 129, Princeton Zbl0787.22016MR1204652
  6. C.J. Bushnell, P. Kutzko, Smooth representations of reductive p -adic groups : structure theory via types, Proc. London Math. Soc. 77 (1998), 582-634 Zbl0911.22014MR1643417
  7. C.J. Bushnell, P. Kutzko, Semisimple types in GL n , Compositio Math. 119 (1999), 53-97 Zbl0933.22027MR1711578
  8. W.T. Gan, S. Takeda, The Local Langlands Conjecture for S p ( 4 ) , Int. Math. Res. Not. 2010 (2010), 2987-3038 Zbl1239.11061MR2673717
  9. P. Gérardin, Weil representations associated to finite fields, J. of Algebra 46 (1977), 54-101 Zbl0359.20008MR460477
  10. D. Goldberg, P. Kutzko, S. Stevens, Covers for self-dual supercuspidal representations of the Siegel Levi subgroup of classical p-adic groups, Int. Math. Res. Not. 2007 (2007) Zbl1133.22010MR2376206
  11. R. Howlett, G. Lehrer, Induced cuspidal representations and generalised Hecke rings, Invent. Math. 58 (1980), 37-64 Zbl0435.20023MR570873
  12. C. Jantzen, Discrete series for p -adic SO ( 2 n ) and restrictions of representations of O ( 2 n )  Zbl1219.22016
  13. P. Kutzko, L. Morris, Level zero Hecke algebras and parabolic induction : the Siegel case for split classical groups, Int. Math. Res. Not. 2006 (2006) Zbl1115.22013MR2276353
  14. C. Mœglin, Normalisation des opérateurs d’entrelacement et réductibilité des induites de cuspidales ; le cas des groupes classiques p-adiques, Ann. of Math. 151 (2000), 817-847 Zbl0956.22012MR1765711
  15. L. Morris, Tamely ramified intertwining algebras, Ann. of Math. 114 (1993), 1-54 Zbl0854.22022MR1235019
  16. M. Neuhauser, An explicit construction of the metaplectic representation over a finite field, J. of Lie Theory 12 (2002), 15-30 Zbl1026.22018MR1885034
  17. F. Shahidi, A proof of Langlands conjecture on Plancherel measure ; complementary series for p-adic groups, Ann. of Math. 132 (1990), 273-330 Zbl0780.22005MR1070599
  18. A. Silberger, Special representations of reductive p-adic groups are not integrable, Ann. of Math. 111 (1980), 571-587 Zbl0437.22015MR577138
  19. S. Stevens, Double coset decomposition and intertwining, manuscripta math. 106 (2001), 349-364 Zbl0988.22008MR1869226
  20. S. Stevens, Semisimple characters for p -adic classical groups, Duke Math. J. 127(1) (2005), 123-173 Zbl1063.22018MR2126498
  21. S. Stevens, The supercuspidal representations of p -adic classical groups, Invent. Math. 172 (2008), 289-352 Zbl1140.22016MR2390287
  22. F. Szechtman, Weil representations of the symplectic group, J. of Algebra 208 (1998), 662-686 Zbl0932.20047MR1655472
  23. Y. Zhang, Discrete series of classical groups, Canad. J. Math. 52(5) (2000), 1101-1120 Zbl0961.22013MR1782340

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.