Quantum variance for Hecke eigenforms

Wenzhi Luo; Peter Sarnak

Annales scientifiques de l'École Normale Supérieure (2004)

  • Volume: 37, Issue: 5, page 769-799
  • ISSN: 0012-9593

How to cite

top

Luo, Wenzhi, and Sarnak, Peter. "Quantum variance for Hecke eigenforms." Annales scientifiques de l'École Normale Supérieure 37.5 (2004): 769-799. <http://eudml.org/doc/82645>.

@article{Luo2004,
author = {Luo, Wenzhi, Sarnak, Peter},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {5},
pages = {769-799},
publisher = {Elsevier},
title = {Quantum variance for Hecke eigenforms},
url = {http://eudml.org/doc/82645},
volume = {37},
year = {2004},
}

TY - JOUR
AU - Luo, Wenzhi
AU - Sarnak, Peter
TI - Quantum variance for Hecke eigenforms
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2004
PB - Elsevier
VL - 37
IS - 5
SP - 769
EP - 799
LA - eng
UR - http://eudml.org/doc/82645
ER -

References

top
  1. [1] Bump D., Automorphic Forms on GL 3 , R , Lecture Notes in Mathematics, vol. 1083, Springer-Verlag, Berlin, 1984. Zbl0543.22005MR765698
  2. [2] Bump D., The Rankin–Selberg method: a survey, in: Number Theory, Trace Formulas and Discrete Groups (Oslo, 1987), Academic Press, Boston, MA, 1989, pp. 49-109. Zbl0668.10034MR993311
  3. [3] Deshouillers J.-M., Iwaniec H., Kloosterman sum and Fourier coefficients of cusp forms, Invent. Math.70 (1982) 219-288. Zbl0502.10021MR684172
  4. [4] Miller, S., Dueñez,E., The low-lying zeros of a GL 6 family ofL-functions, preprint, 2004. 
  5. [5] Eckhardt B., Fishman S., Keating J., Agam O., Main J., Müller K., Approach to ergodicity in quantum wave functions, Phys. Rev. E52 (1995) 5893-5903. 
  6. [6] Feingold M., Peres A., Distribution of matrix elements of chaotic systems, Phys. Rev. A (3)34 (1) (1986) 591-595. MR848319
  7. [7] Gelbart S., Jacquet H., A relation between automorphic representations of GL 2 and GL 3 , Ann. Sci. École Norm. Sup. 11 (1978) 471-552. Zbl0406.10022MR533066
  8. [8] Gradshtein I.S, Ryzhik I.M., Tables of Integrals, Series and Products, Academic Press, New York, 1965. Zbl0918.65002MR1773820
  9. [9] Helgason S., Differential Geometry and Symmetric Spaces, Pure and Applied Mathematics, vol. XII, Academic Press, New York, 1962. Zbl0111.18101MR145455
  10. [10] Hoffstein J., Lockhart P., Coefficients of Maass forms and the Siegel zero, appendix by Goldfeld, D., Hoffstein, J., Lieman, D. An effective zero free region, Annals of Math.140 (1994) 161-181. Zbl0814.11032MR1289494
  11. [11] Iwaniec H., Introduction to the Spectral Theory of Automorphic Forms, Revista Matematica Iberoamericana, Madrid, 1995. Zbl0847.11028MR1325466
  12. [12] Iwaniec H., Topics in Classical Automorphic Forms, Graduate Studies in Mathematics, vol. 17, AMS, 1997. Zbl0905.11023MR1474964
  13. [13] Iwaniec H., Luo W., Sarnak P., Low lying zeros of families of L-functions, Inst. Hautes Études Sci. Publ. Math.91 (2001) 55-131. Zbl1012.11041MR1828743
  14. [14] Iwaniec H., Sarnak P., Perspectives on the analytic theory of L-functions, Geom. Funct. Anal. (2000) 705-741, Special Volume, Part II. Zbl0996.11036MR1826269
  15. [15] Iwaniec H., Sarnak P., The nonvanishing of central values of automorphic L-functions and Siegel's zero, Israel J. Math. A120 (2000) 155-177. Zbl0992.11037MR1815374
  16. [16] Jakobson D., Equidistribution of cusp forms on PSL 2 Z PSL 2 R , Ann. Inst. Fourier (Grenoble)47 (3) (1997) 967-984. Zbl0868.43011MR1465794
  17. [17] Katok S., Sarnak P., Heegner points, cycles and Maass forms, Israel J. Math.84 (1993) 193-227. Zbl0787.11016MR1244668
  18. [18] Katz N., Sarnak P., Random Matrices, Frobenius Eigenvalues and Monodromy, Colloquium Publications, vol. 45, AMS, 1999. Zbl0958.11004MR1659828
  19. [19] Keating J.P., Snaith N.C., Random matrix theory and L-functions at s = 1 / 2 , Comm. Math. Phys.214 (1) (2000) 91-110. Zbl1051.11047MR1794267
  20. [20] Kurlberg, P., Rudnick, Z., On the distribution of matrix elements for the quantum cat map, preprint, 2003. Zbl1082.81054MR2150390
  21. [21] Kuznetsov N.V., Petersson's conjecture for cusp forms of weight zero and Linnik's conjecture, sums of Kloosterman sums, Mat. Sb.111 (1980) 334-383. Zbl0427.10016MR568983
  22. [22] Luo W., Values of symmetric square L-functions at 1, J. Reine Angew. Math.506 (1999) 215-235. Zbl0969.11018MR1665705
  23. [23] Luo W., Sarnak P., Quantum ergodicity of eigenfunctions on PSL 2 Z H , Inst. Hautes Études Sci. Publ. Math.81 (1995) 207-237. Zbl0852.11024MR1361757
  24. [24] Luo W., Sarnak P., Mass equidistribution for Hecke eigenforms, Comm. Pure Appl. Math.56 (7) (2003) 874-891. Zbl1044.11022MR1990480
  25. [25] Ratner M., The central limit theorem for geodesic flows on n-dimensional manifolds of negative curvature, Israel J. Math.16 (1973) 181-197. Zbl0283.58010MR333121
  26. [26] Ratner M., The rate of mixing for geodesic and horocycle flows, Ergodic Theory Dynam. Systems7 (1987) 267-288. Zbl0623.22008MR896798
  27. [27] Salié H., Uber die Kloostermanschen Summen S u , v ; q , Math. Z.34 (1931) 91-109. Zbl0002.12801MR1545243
  28. [28] Sarnak, P., Arithmetic quantum chaos, The R.A. Blyth Lecture, University of Toronto, 1993. MR1321639
  29. [29] Watson, T., Rankin triple products and quantum chaos, Thesis, Princeton University, 2001. 
  30. [30] Serre J.-P., A Course in Arithmetic, Graduate Texts in Mathematics, vol. 7, Springer-Verlag, New York, 1973. Zbl0256.12001MR344216
  31. [31] Terras A., Harmonic Analysis on Symmetric Spaces and Applications I, Springer-Verlag, New York, 1985. Zbl0574.10029MR791406
  32. [32] Zelditch S., Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J.55 (1987) 919-941. Zbl0643.58029MR916129
  33. [33] Zelditch S., On the rate of quantum ergodicity, I. Upper bounds, Comm. Math. Phys.160 (1) (1994) 81-92. Zbl0788.58043MR1262192

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.