Holes in I n

Nikita A. Karpenko

Annales scientifiques de l'École Normale Supérieure (2004)

  • Volume: 37, Issue: 6, page 973-1002
  • ISSN: 0012-9593

How to cite

top

Karpenko, Nikita A.. "Holes in ${I}^{n}$." Annales scientifiques de l'École Normale Supérieure 37.6 (2004): 973-1002. <http://eudml.org/doc/82651>.

@article{Karpenko2004,
author = {Karpenko, Nikita A.},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {6},
pages = {973-1002},
publisher = {Elsevier},
title = {Holes in $\{I\}^\{n\}$},
url = {http://eudml.org/doc/82651},
volume = {37},
year = {2004},
}

TY - JOUR
AU - Karpenko, Nikita A.
TI - Holes in ${I}^{n}$
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2004
PB - Elsevier
VL - 37
IS - 6
SP - 973
EP - 1002
LA - eng
UR - http://eudml.org/doc/82651
ER -

References

top
  1. [1] Arason J., Pfister A., Beweis des Krullschen Durchschnittsatzes für den Wittring, Invent. Math.12 (1971) 173-176. Zbl0212.37302MR294251
  2. [2] Brosnan P., Steenrod operations in Chow theory, Trans. Amer. Math. Soc.355 (5) (2003) 1869-1903. Zbl1045.55005MR1953530
  3. [3] Brosnan P., A short proof of Rost nilpotence via refined correspondences, Doc. Math.8 (2003) 69-78. Zbl1044.11017MR2029161
  4. [4] Chernousov V., Gille S., Merkurjev A., Motivic decomposition of isotropic projective homogeneous varieties, Duke Math. J. (in press). Zbl1086.14041MR2110630
  5. [5] Fulton W., Intersection Theory, Springer, Berlin, 1984. Zbl0541.14005MR732620
  6. [6] Hoffmann D.W., On the dimensions of anisotropic quadratic forms in I 4 , Invent. Math.31 (1998) 185-198. Zbl0905.11020MR1489898
  7. [7] Izhboldin O., Vishik A., Quadratic forms with absolutely maximal splitting, in: Quadratic Forms and their Applications (Dublin, 1999), Contemp. Math., vol. 272, 2000, pp. 103-125. Zbl0972.11017MR1803363
  8. [8] Karpenko N.A., Cohomology of relative cellular spaces and isotropic flag varieties, Algebra i Analiz12 (1) (2000) 3-69, (in Russian). Engl. transl., St. Petersburg Math. J.12 (1) (2001) 1-50. Zbl1003.14016MR1758562
  9. [9] Karpenko N.A., On the first Witt index of quadratic forms, Invent. Math.153 (2003) 455-462. Zbl1032.11016MR1992018
  10. [10] Karpenko N.A., Third proof of second gap in dimensions of quadratic forms from I n , in: Algebraic and Arithmetic Theory of Quadratic Forms (Talca, 2002), Contemp. Math., vol. 344, 2004, pp. 207-213. Zbl1143.11307MR2058676
  11. [11] Karpenko N.A., Cycles on powers of quadrics, in: Tschinkel Y. (Ed.), Mathematisches Institut Georg-August-Universität Göttingen Seminars 2003/2004, 2004, pp. 31-36. Zbl1098.14503MR2181559
  12. [12] Karpenko N.A., Merkurjev A.S., Rost projectors and Steenrod operations, Doc. Math.7 (2002) 481-493. Zbl1030.11013MR2015051
  13. [13] Karpenko N.A., Merkurjev A.S., Essential dimension of quadrics, Invent. Math.153 (2003) 361-372. Zbl1032.11015MR1992016
  14. [14] Knebusch M., Generic splitting of quadratic forms. I, Proc. London Math. Soc. (3)33 (1) (1976) 65-93. Zbl0351.15016MR412101
  15. [15] Orlov D., Vishik A., Voevodsky V., An exact sequence for K * M / 2 with applications to quadratic forms, 454 (2000). 
  16. [16] Panin I.A., On the algebraic K-theory of twisted flag varieties, 8 (6) (1994) 541-585. Zbl0854.19002MR1326751
  17. [17] Pfister A., Quadratische Formen in beliebigen Körpern, Invent. Math.1 (1966) 116-132. Zbl0142.27203MR200270
  18. [18] Rost M., The motive of a Pfister form, Preprint, 1998. 
  19. [19] Scharlau W., Quadratic and Hermitian Forms, Springer, Berlin, 1985. Zbl0584.10010MR770063
  20. [20] Swan R.G., K-theory of quadric hypersurfaces, Ann. Math.122 (1) (1985) 113-154. Zbl0601.14009MR799254
  21. [21] VishikA., On the dimension of anisotropic forms in I n , Max-Planck-Institut für Mathematik in Bonn, preprint MPI 2000-11, 2000, 1–41. 
  22. [22] Vishik A., Motives of quadrics with applications to the theory of quadratic forms, in: Geometric Methods in the Algebraic Theory of Quadratic Forms (Lens, 2000), Lect. Notes Math., vol. 1835, Springer, Berlin, 2004, pp. 25-101. Zbl1047.11033MR2066515
  23. [23] Voevodsky V., Reduced power operations in motivic cohomology, Publ. Math. I.H.É.S.98 (2003) 1-57. Zbl1057.14027MR2031198

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.