The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the variety of lagrangian subalgebras, II”

Fixed points for reductive group actions on acyclic varieties

Martin Fankhauser (1995)

Annales de l'institut Fourier

Similarity:

Let X be a smooth, affine complex variety, which, considered as a complex manifold, has the singular -cohomology of a point. Suppose that G is a complex algebraic group acting algebraically on X . Our main results are the following: if G is semi-simple, then the generic fiber of the quotient map π : X X / / G contains a dense orbit. If G is connected and reductive, then the action has fixed points if dim X / / G 3 .

A classification of Poisson homogeneous spaces of complex reductive Poisson-Lie groups

Eugene Karolinsky (2000)

Banach Center Publications

Similarity:

Let G be a complex reductive connected algebraic group equipped with the Sklyanin bracket. A classification of Poisson homogeneous G-spaces with connected isotropy subgroups is given. This result is based on Drinfeld's correspondence between Poisson homogeneous G-spaces and Lagrangian subalgebras in the double D𝖌 (here 𝖌 = Lie G). A geometric interpretation of some Poisson homogeneous G-spaces is also proposed.