Analytic cell decomposition and analytic motivic integration
Raf Cluckers; Leonard Lipshitz; Zachary Robinson
Annales scientifiques de l'École Normale Supérieure (2006)
- Volume: 39, Issue: 4, page 535-568
- ISSN: 0012-9593
Access Full Article
topHow to cite
topCluckers, Raf, Lipshitz, Leonard, and Robinson, Zachary. "Analytic cell decomposition and analytic motivic integration." Annales scientifiques de l'École Normale Supérieure 39.4 (2006): 535-568. <http://eudml.org/doc/82694>.
@article{Cluckers2006,
author = {Cluckers, Raf, Lipshitz, Leonard, Robinson, Zachary},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Henselian valued fields; cell decomposition; analytic structure; motivic integration},
language = {eng},
number = {4},
pages = {535-568},
publisher = {Elsevier},
title = {Analytic cell decomposition and analytic motivic integration},
url = {http://eudml.org/doc/82694},
volume = {39},
year = {2006},
}
TY - JOUR
AU - Cluckers, Raf
AU - Lipshitz, Leonard
AU - Robinson, Zachary
TI - Analytic cell decomposition and analytic motivic integration
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2006
PB - Elsevier
VL - 39
IS - 4
SP - 535
EP - 568
LA - eng
KW - Henselian valued fields; cell decomposition; analytic structure; motivic integration
UR - http://eudml.org/doc/82694
ER -
References
top- [1] Ax J., Kochen S., Diophantine problems over local fields I, II, Amer. J. Math.87 (1965) 605-648, Diophantine problems over local fields III, Ann. of Math.83 (1966) 437-456. Zbl0223.02050MR184930
- [2] Bosch S., Güntzer U., Remmert R., Non-Archimedean Analysis, Springer, Berlin, 1984. Zbl0539.14017MR746961
- [3] Çelikler Y.F., Dimension theory and parameterized normalization for D-semianalytic sets over non-Archimedean fields, J. Symbolic Logic70 (2005) 593-618. Zbl1119.03028MR2140048
- [4] Cluckers R., Analytic p-adic cell decomposition and integrals, Trans. Amer. Math. Soc.356 (2004) 1489-1499, math.NT/0206161. Zbl1048.11094MR2034315
- [5] Cluckers R., Lipshitz L., Fields with analytic structure, Preprint. Zbl1291.03074
- [6] Cluckers R., Loeser F., Constructible motivic functions and motivic integration, math.AG/0410203. Zbl1179.14011
- [7] Cluckers R., Loeser F., Fonctions constructibles et intégration motivique I, Comptes rendus de l'Académie des Sciences339 (2004) 411-416, math.AG/0403349. Zbl1062.14030MR2092754
- [8] Cluckers R., Loeser F., Fonctions constructibles et intégration motivique II, Comptes rendus de l'Académie des Sciences339 (2004) 487-492, math.AG/0403350. Zbl1064.14021MR2099547
- [9] Cluckers R., Loeser F., Ax–Kochen–Eršov theorems for p-adic integrals and motivic integration, in: Geometric Methods in Algebra and Number Theory, Progr. Math., vol. 235, Birkhäuser Boston, 2005, pp. 109-137. Zbl1159.12314MR2159379
- [10] Cluckers R., Loeser F., Fonctions constructibles exponentielles, transformation de Fourier motivique et principe de transfert, Comptes rendus de l'Académie des Sciences341 (2005) 741-746, math.NT/0509723. Zbl1081.14032MR2188869
- [11] Cohen P.J., Decision procedures for real and p-adic fields, Comm. Pure Appl. Math.22 (1969) 131-151. Zbl0167.01502MR244025
- [12] Denef J., The rationality of the Poincaré series associated to the p-adic points on a variety, Inventiones Mathematicae77 (1984) 1-23. Zbl0537.12011MR751129
- [13] Denef J., On the evaluation of certain p-adic integrals, in: Séminaire de théorie des nombres, Paris 1983–84, Progr. Math., vol. 59, Birkhäuser Boston, 1985, pp. 25-47. Zbl0597.12021MR902824
- [14] Denef J., p-adic semialgebraic sets and cell decomposition, Journal für die reine und angewandte Mathematik369 (1986) 154-166. Zbl0584.12015MR850632
- [15] Denef J., Loeser F., Germs of arcs on singular algebraic varieties and motivic integration, Inventiones Mathematicae135 (1999) 201-232. Zbl0928.14004MR1664700
- [16] Denef J., Loeser F., Definable sets, motives and p-adic integrals, J. Amer. Math. Soc.14 (2) (2001) 429-469. Zbl1040.14010MR1815218
- [17] Denef J., Loeser F., On some rational generating series occurring in arithmetic geometry, in: Adolphson A., Baldassarri F., Berthelot P., Katz N., Loeser F. (Eds.), Geometric Aspects of Dwork Theory 1, de Gruyter, Berlin, 2004, pp. 509-526, math.NT/0212202. Zbl1061.11067MR2099079
- [18] Denef J., van den Dries L., p-adic and real subanalytic sets, Ann. of Math.128 (1988) 79-138. Zbl0693.14012MR951508
- [19] van den Dries L., Analytic Ax–Kochen–Ershov theorems, in: Contemporary Mathematics, vol. 131, 1992, pp. 379-398. Zbl0835.03004MR1175894
- [20] van den Dries L., notes on cell decomposition.
- [21] van den Dries L., Haskell D., Macpherson D., One-dimensional p-adic subanalytic sets, J. London Math. Soc. (2)59 (1999) 1-20. Zbl0932.03038MR1688485
- [22] Endler O., Valuation Theory, Springer, Berlin, 1972. Zbl0257.12111MR357379
- [23] Fresnel J., van der Put M., Géométrie analytique rigide et applications, Progr. Math., vol. 18, Birkhäuser, Basel, 1981. Zbl0479.14015MR644799
- [24] Fresnel J., van der Put M., Rigid Geometry and Applications, Progr. Math., vol. 218, Birkhäuser, Basel, 2004. Zbl1096.14014
- [25] Kazhdan D., An algebraic integration, in: Mathematics: Frontiers and Perspectives, AMS, Providence, RI, 2000, pp. 93-115. Zbl0976.20030MR1754770
- [26] Kuhlmann F.-V., Quantifier elimination for Henselian fields relative to additive and multiplicative congruences, Israel J. Math.85 (1994) 277-306. Zbl0809.03028MR1264348
- [27] Lang S., Algebra, Addison-Wesley, 1965. Zbl0848.13001MR197234
- [28] Lion J.-M., Rolin J.-P., Intégration des fonctions sous-analytiques et volumes des sous-ensembles sous-analytiques, Ann. Inst. Fourier48 (3) (1998) 755-767, (in French). Zbl0912.32007MR1644093
- [29] Lipshitz L., Rigid subanalytic sets, Amer. J. Math.115 (1993) 77-108. Zbl0792.14010MR1209235
- [30] Lipshitz L., Robinson Z., Rigid subanalytic subsets of the line and the plane, Amer. J. Math.118 (1996) 493-527. Zbl0935.14035MR1393258
- [31] Lipshitz L., Robinson Z., Rigid subanalytic subsets of curves and surfaces, J. London Math. Soc. (2)59 (1999) 895-921. Zbl0935.32008MR1709087
- [32] Lipshitz L., Robinson Z., Rings of separated power series, Astérisque264 (2000) 3-108. Zbl0957.32011MR1758887
- [33] Lipshitz L., Robinson Z., Model completeness and subanalytic sets, Astérisque264 (2000) 109-126.
- [34] Lipshitz L., Robinson Z., Uniform properties of rigid subanalytic sets, Trans. Amer. Math. Soc.357 (1) (2005) 4349-4377. Zbl1081.03024MR2156714
- [35] Loeser F., Sebag J., Motivic integration on smooth rigid varieties and invariants of degenerations, Duke Math. J.119 (2) (2003) 315-344. Zbl1078.14029MR1997948
- [36] Macintyre A., Rationality of p-adic Poincaré series: uniformity in p, Ann. Pure Appl. Logic49 (1) (1990) 31-74. Zbl0731.12015MR1076249
- [37] Nicaise J., Sebag J., Invariant de Serre et fibre de Milnor analytique, Available at:, http://www.wis.kuleuven.ac.be/algebra/artikels/artikelse.htm, (in French). Zbl1079.14005
- [38] Pas J., Uniform p-adic cell decomposition and local zeta-functions, Journal für die reine und angewandte Mathematik399 (1989) 137-172. Zbl0666.12014MR1004136
- [39] Pas J., Cell decomposition and local zeta-functions in a tower of unramified extensions of a p-adic field, Proc. London Math. Soc.60 (1990) 37-67. Zbl0659.12017MR1023804
- [40] Scanlon T., Quantifier elimination for the relative Frobenius, in: Kuhlmann Franz-Viktor, Kuhlmann Salma, Marshall Murray (Eds.), Valuation Theory and Its Applications, vol. II, Conference Proceedings of the International Conference on Valuation Theory (Saskatoon, 1999), Fields Institute Communications Series, AMS, Providence, RI, 2003, pp. 323-352. Zbl1040.03031MR2018563
- [41] Sebag J., Rationalité des séries de Poincaré et des fonctions zêta motiviques, Manuscripta Math.115 (2) (2004) 125-162, (in French). Zbl1073.14524MR2098466
- [42] Sebag J., Intégration motivique sur les schémas formels, Bull. Soc. Math. France132 (1) (2004) 1-54, (in French). Zbl1084.14012MR2075915
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.