A note on a paper by Andreotti and Hill concerning the Hans Lewy problem

Olle Stormark

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1975)

  • Volume: 2, Issue: 4, page 557-569
  • ISSN: 0391-173X

How to cite

top

Stormark, Olle. "A note on a paper by Andreotti and Hill concerning the Hans Lewy problem." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 2.4 (1975): 557-569. <http://eudml.org/doc/83703>.

@article{Stormark1975,
author = {Stormark, Olle},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {557-569},
publisher = {Scuola normale superiore},
title = {A note on a paper by Andreotti and Hill concerning the Hans Lewy problem},
url = {http://eudml.org/doc/83703},
volume = {2},
year = {1975},
}

TY - JOUR
AU - Stormark, Olle
TI - A note on a paper by Andreotti and Hill concerning the Hans Lewy problem
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1975
PB - Scuola normale superiore
VL - 2
IS - 4
SP - 557
EP - 569
LA - eng
UR - http://eudml.org/doc/83703
ER -

References

top
  1. [1] A. Andreotti - H. Grauert, Théoremes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France, 90 (1962), pp. 193-259. Zbl0106.05501MR150342
  2. [2] A. Andreotti - C.D. Hill, E. E. Levi convexity and the Hans-Lewy problem. Part I: Reduction to vanishing theorems, Ann. Scuola Norm. Sup. Pisa, 26 (1972), pp. 323-363. Zbl0256.32007MR460725
  3. [3] A. Andreotti - C.D. Hill, E. E. Levi convexity and the Hans-Lewy problem. Part II: Vanishing theorems, Ann. Scuola Norm. Sup. Pisa, 26 (1972), pp. 747-806. Zbl0283.32013MR477150
  4. [4] A. Andreotti - F. Norguet, Problème de Levi et convexité holomorphe pour des classes de cohomologie, Ann. Scuola Norm. Sup. Pisa, 20 (1966), pp. 197-241. Zbl0154.33504MR199439
  5. [5] F.R. Harvey, The theory of hyperfunctions on totally real subsets of a complex manifold with applications to extension problems, Amer. J. Math., 91 (1969), pp. 853-873. Zbl0202.36602MR257400
  6. [6] F.R. Harvey - R.O. WellsJr., Holomorphic approximation and hyperfunction theory on a C1 totally real submanifold of a complex manifold, Math. Ann., 197 (1972), pp. 287-318. Zbl0246.32019MR310278
  7. [7] M. Kashiwara - T. Kawai, On the boundary value problem for elliptic system of linear differential equations I, Proc. Japan Acad., 48 (1972), pp. 712-715. Zbl0271.35028MR413200
  8. [8] M. Kashiwara - T. Kawai, On the boundary value problem for elliptic system of linear differential equations II, Proc. Japan Acad., 49 (1973), pp. 164-168. Zbl0279.35037MR413201
  9. [9] H. Komatsu, An introduction to the theory of hyperfunctions, in Lecture Notes in Mathematics287: Hyperfunctions and Pseudo-Differential Equations, Proceedings 1971, Springer-Verlag, Berlin, Heidelberg, New York (1973), pp. 3-40. Zbl0258.46040MR394190
  10. [10] H. Komatsu, Relativ cohomology of sheaves of solutions of differential equations, in Lecture Notes in Mathematics287: Hyperfunctions and Pseudo-Differential Equations, Proceedings 1971, Springer-Verlag, Berlin, Heidelberg, New York (1973), pp. 192-261. Zbl0278.58010MR393874
  11. [11] A. Martineau, Le « edge of the wedge theorem » en théorie des hyperfunctions de Sato, Proc. Intern. Conf. on Functional Analysis and Related Topics, Tokyo1969, Univ. Tokyo Press (1970), pp. 95-106. Zbl0193.41503MR267128
  12. [12] P. Schapira, Théorie des Hyperfonctions, Lecture Notes in Mathematics126, Springer-Verlag, Berlin, Heidelberg, New York, 1970. Zbl0192.47305MR270151

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.