Homology theory for real analytic and semianalytic sets

Robert M. Hardt

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1975)

  • Volume: 2, Issue: 1, page 107-148
  • ISSN: 0391-173X

How to cite

top

Hardt, Robert M.. "Homology theory for real analytic and semianalytic sets." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 2.1 (1975): 107-148. <http://eudml.org/doc/83682>.

@article{Hardt1975,
author = {Hardt, Robert M.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {1},
pages = {107-148},
publisher = {Scuola normale superiore},
title = {Homology theory for real analytic and semianalytic sets},
url = {http://eudml.org/doc/83682},
volume = {2},
year = {1975},
}

TY - JOUR
AU - Hardt, Robert M.
TI - Homology theory for real analytic and semianalytic sets
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1975
PB - Scuola normale superiore
VL - 2
IS - 1
SP - 107
EP - 148
LA - eng
UR - http://eudml.org/doc/83682
ER -

References

top
  1. [1] A. Borel - A. Haefliger, La classe d'homologie fondamentale d'un espace analytique, Bull. Soc. Math. France, 89 (1961), pp. 461-513. Zbl0102.38502MR149503
  2. [2] Eilenberg - N. Steenrod, Foundations of algebraic topology, Princeton University Press, Princeton, 1952. Zbl0047.41402MR50886
  3. [3] H. Federer, Geometric measure theory, Springer-Verlag, Heidelberg and New York, 1969. Zbl0176.00801MR257325
  4. [4] B. Giesecke, Simplicial Zerlegung abzähbahlbarer analytische raüme, Math. Zeit., 83 (1964), pp. 177-213. Zbl0123.39602MR159346
  5. [5] L. Grauert, On Levi's problem and the embedding of real analytic manifolds, Ann. of Math., 68 (1958), pp. 460-472. Zbl0108.07804MR98847
  6. [6] R.M. Hardt, Slicing and intersection theory for chains associated with real analytic varieties, Acta Math., 129 (1972), pp. 75-136. Zbl0234.32005MR315561
  7. [7] R.M. Hardt, Slicing and intersection theory for chains modulo é associated with real analytic varieties, Trans. Amer. Math. Soc., 183 (1973), pp. 327-340. Zbl0267.28010MR338430
  8. [8] R.M. Hardt, Stratification of real analytic mappings and images, Inventiones Math.28 (1975), pp. 193-208. Zbl0298.32003MR372237
  9. [9] J.L. Kelley, General Topology, Van Nostrand, New York, 1955. Zbl0066.16604MR70144
  10. [10] B.C. Koopman - A.B. Brown, On the covering of analytic loci by complexes, Trans. Amer. Math. Soc., 34 (1932), pp. 231-251. Zbl0004.13203MR1501636JFM58.1203.02
  11. [11] S. Lojasiewicz, Sur le problème de la division, Rozprawy Mathematyczne, no. 22, Warsaw, 1961. Zbl0096.32102MR126072
  12. [12] S. Lojasiewicz, Triangulation of semi-analytic sets, Annali Sc. Norm. Sup. Pisa, serie 3, 18 (1964), pp. 449-474. Zbl0128.17101MR173265
  13. [13] S. Lojasiewicz, Ensembles semianalytiques, Cours Faculté des Sciences d'Orsay, I.H.E.S., Bures-sur-Yvette, 1965. 
  14. [14] S. Lojasiewicz, Une propriété topologique des sous-ensembles analytique reéls, Colloques internationaux du Centre National de la Recherche Scientifique, no. 117, Les Equations aux Dérivées Partielles, Paris, 1962, pp. 87-89. Zbl0234.57007MR160856
  15. [15] R. Narashimhan, Introduction to the theory of analytic spaces, Springer-Verlag, New York, 1966. Zbl0168.06003
  16. [16] A. Seidenberg, A new decision method for elementary algebra, Ann. of Math., 60 (1954), pp. 365-374. Zbl0056.01804MR63994
  17. [17] E.H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. Zbl0145.43303MR210112
  18. [18] R. Thom, Ensembles morphismes stratifiés, Bull. Amer. Math. Soc., 75 (1969), pp. 240-284. Zbl0197.20502MR239613
  19. [19] B.L. Van Der Waerden, Algebra, vol. 1, Ungar, New York, 1970. 
  20. [20] H. Whitney, Geometric integration theory, Princeton University Press, Princeton, 1957. Zbl0083.28204MR87148
  21. [21]] H. H, Subanalytic sets, Numer Theory, Algebraic Geometry, and Commutative Algebra (Dedicated to Akizuki), Kinokunia, Tokyo, 1973, pp. 453-493. Zbl0297.32008MR377101
  22. [22] H. Hironaka, Introduction to real analytic sets and real analytic maps, Lecture notes of Istituto matematico « Leonida Tonelli », Pisa, 1973. MR477121
  23. [23] D. Sullivan, Combinatorial invariants of analytic spaces, Proceedings of Liver-pool Singularities-Symposium I, Springer-Verlag Lecture Notes in Mathematics, 192 (1971), pp. 165-168. Zbl0227.32005MR278333
  24. [24] D. Burghelea - A. Verona, Local homological properties of analytic sets, Manuscripta Math., 7 (1972), pp. 55-62. Zbl0246.32007MR310285
  25. [25] R.M. Hardt, Sullivan's local Euler characteristic theorem, Manuscripta Math., 12 (1974), pp. 87-92. Zbl0281.32005MR338431
  26. [26] R.M. Hardt, Topological properties of subanalytic sets, to appear in Trans. Amer. Math. Soc. Zbl0303.32008MR379882
  27. [27] R.M. Hardt, Triangulation of subanalytic sets and proper light subanalytic maps, preprint. Zbl0331.32006MR454051

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.