Embeddability of real analytic Cauchy-Riemann manifolds

Aldo Andreotti; Gregory A. Fredricks

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1979)

  • Volume: 6, Issue: 2, page 285-304
  • ISSN: 0391-173X

How to cite


Andreotti, Aldo, and Fredricks, Gregory A.. "Embeddability of real analytic Cauchy-Riemann manifolds." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 6.2 (1979): 285-304. <http://eudml.org/doc/83810>.

author = {Andreotti, Aldo, Fredricks, Gregory A.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {complex embedding; real analytic C-R manifolds; convexity of complexification},
language = {eng},
number = {2},
pages = {285-304},
publisher = {Scuola normale superiore},
title = {Embeddability of real analytic Cauchy-Riemann manifolds},
url = {http://eudml.org/doc/83810},
volume = {6},
year = {1979},

AU - Andreotti, Aldo
AU - Fredricks, Gregory A.
TI - Embeddability of real analytic Cauchy-Riemann manifolds
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1979
PB - Scuola normale superiore
VL - 6
IS - 2
SP - 285
EP - 304
LA - eng
KW - complex embedding; real analytic C-R manifolds; convexity of complexification
UR - http://eudml.org/doc/83810
ER -


  1. [1] A. Andreotti, Introduzione all'analisi complessa. Contributi del Centro Linceo Interdisciplinare di Scienze Matematiche e loro Applicazioni, no. 24. Accademia Nazionale dei Lincei, Roma, 1976. 
  2. [2] A. Andreotti - C.D. Hill, Complex characteristic coordinates and tangential Cauchy-Riemann equations, Ann. Scuola Norm. Sup. Pisa, (3) 26 (1972), pp. 299-324. Zbl0256.32006MR460724
  3. [3] A. Andreotti - P. Holm, Quasi-analytic and parametric spaces, in Singularities of Real/Complex Maps, Oslo, 1976, Noordhoof, Leyden, The Netherlands, 1977. Zbl0376.32025
  4. [4] F. Bruhat - H. Whitney, Quelques propriétés fondamentales des ensembles analytiques-réels, Comment. Math. Helv., 33 (1959), pp. 132-160. Zbl0100.08101MR102094
  5. [5] G.A. Fredricks, Some remarks on Cauchy-Riemann structures, to appear in Differential Topology. Centro Internazionale Matematico Estivo (C.I.M.E.), III Ciclo, Varenna, Italy, 1976. Zbl0454.32016MR660657
  6. [6] H. Grauert, On Levi's problem and the imbedding of real-analytic manifolds, Ann. of Math., 68 (1958), pp. 460-472. Zbl0108.07804MR98847
  7. [7] S.J. Greenfield, Cauchy-Riemann equations in several variables, Ann. Scuola Norm. Sup. Pisa, (3) 22 (1968), pp. 275-314. Zbl0159.37502MR237816
  8. [8] A. Haefliger, Structures feuilletées et cohomologie à valeur dans un faisceau de groupoïdes, Comment. Math. Helv., 32 (1958), pp. 248-329. Zbl0085.17303MR100269
  9. [9] L. Nirenberg, Lectures on Linear Partial Differential Equations. Regional Conf. Series in Math., no. 17, American Math. Society, Providence, 1973. Zbl0267.35001MR450755
  10. [10] H. Rossi, Differentiable manifolds in complex Euclidean space, in Proc. Internat. Congr. Math., Moscow, 1966 (Moscow, 1968). Zbl0192.44002MR234499
  11. [11] H. Rossi, Homogeneous strongly pseudoconvex hypersurfaces, Rice Univ. Studies, 59 (1) (1973), pp. 131-145. Zbl0277.32011MR330514
  12. [12] H.B. Shutrick, Complex extensions, Quart. J. Math. Oxford Ser., (2) 9 (1958), pp. 181-201. Zbl0093.35401MR98846
  13. [13] G. Tomassini, Tracce delle funzioni olomorfe sulle sottovarietà analitiche reali d'una varietà complessa, Ann. Scuola Norm. Sup. Pisa, (3) 20 (1966), pp. 31-44. Zbl0154.33501MR206992

Citations in EuDML Documents

  1. M. Salah Baouendi, Linda Preiss Rothschild, Jörg Winkelmann, Dimitri Zaitsev, Lie group structures on groups of diffeomorphisms and applications to CR manifolds
  2. Hidetaka Hamada, Tatsuhiro Honda, A characterization of linear automorphisms of the Euclidean ball
  3. R. Lehmann, D. Feldmueller, Homogeneous C R -hypersurface-structures on spheres
  4. Andrea Altomani, Costantino Medori, Mauro Nacinovich, On Homogeneous and Symmetric CR Manifolds
  5. Andreas Krüger, Homogeneous Cauchy-Riemann structures
  6. Mauro Nacinovich, The Contribution of A. Andreotti to the Theory of Complexes of p.d.o.'s

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.