Embeddability of real analytic Cauchy-Riemann manifolds
Aldo Andreotti; Gregory A. Fredricks
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1979)
- Volume: 6, Issue: 2, page 285-304
- ISSN: 0391-173X
Access Full Article
topHow to cite
topAndreotti, Aldo, and Fredricks, Gregory A.. "Embeddability of real analytic Cauchy-Riemann manifolds." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 6.2 (1979): 285-304. <http://eudml.org/doc/83810>.
@article{Andreotti1979,
author = {Andreotti, Aldo, Fredricks, Gregory A.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {complex embedding; real analytic C-R manifolds; convexity of complexification},
language = {eng},
number = {2},
pages = {285-304},
publisher = {Scuola normale superiore},
title = {Embeddability of real analytic Cauchy-Riemann manifolds},
url = {http://eudml.org/doc/83810},
volume = {6},
year = {1979},
}
TY - JOUR
AU - Andreotti, Aldo
AU - Fredricks, Gregory A.
TI - Embeddability of real analytic Cauchy-Riemann manifolds
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1979
PB - Scuola normale superiore
VL - 6
IS - 2
SP - 285
EP - 304
LA - eng
KW - complex embedding; real analytic C-R manifolds; convexity of complexification
UR - http://eudml.org/doc/83810
ER -
References
top- [1] A. Andreotti, Introduzione all'analisi complessa. Contributi del Centro Linceo Interdisciplinare di Scienze Matematiche e loro Applicazioni, no. 24. Accademia Nazionale dei Lincei, Roma, 1976.
- [2] A. Andreotti - C.D. Hill, Complex characteristic coordinates and tangential Cauchy-Riemann equations, Ann. Scuola Norm. Sup. Pisa, (3) 26 (1972), pp. 299-324. Zbl0256.32006MR460724
- [3] A. Andreotti - P. Holm, Quasi-analytic and parametric spaces, in Singularities of Real/Complex Maps, Oslo, 1976, Noordhoof, Leyden, The Netherlands, 1977. Zbl0376.32025
- [4] F. Bruhat - H. Whitney, Quelques propriétés fondamentales des ensembles analytiques-réels, Comment. Math. Helv., 33 (1959), pp. 132-160. Zbl0100.08101MR102094
- [5] G.A. Fredricks, Some remarks on Cauchy-Riemann structures, to appear in Differential Topology. Centro Internazionale Matematico Estivo (C.I.M.E.), III Ciclo, Varenna, Italy, 1976. Zbl0454.32016MR660657
- [6] H. Grauert, On Levi's problem and the imbedding of real-analytic manifolds, Ann. of Math., 68 (1958), pp. 460-472. Zbl0108.07804MR98847
- [7] S.J. Greenfield, Cauchy-Riemann equations in several variables, Ann. Scuola Norm. Sup. Pisa, (3) 22 (1968), pp. 275-314. Zbl0159.37502MR237816
- [8] A. Haefliger, Structures feuilletées et cohomologie à valeur dans un faisceau de groupoïdes, Comment. Math. Helv., 32 (1958), pp. 248-329. Zbl0085.17303MR100269
- [9] L. Nirenberg, Lectures on Linear Partial Differential Equations. Regional Conf. Series in Math., no. 17, American Math. Society, Providence, 1973. Zbl0267.35001MR450755
- [10] H. Rossi, Differentiable manifolds in complex Euclidean space, in Proc. Internat. Congr. Math., Moscow, 1966 (Moscow, 1968). Zbl0192.44002MR234499
- [11] H. Rossi, Homogeneous strongly pseudoconvex hypersurfaces, Rice Univ. Studies, 59 (1) (1973), pp. 131-145. Zbl0277.32011MR330514
- [12] H.B. Shutrick, Complex extensions, Quart. J. Math. Oxford Ser., (2) 9 (1958), pp. 181-201. Zbl0093.35401MR98846
- [13] G. Tomassini, Tracce delle funzioni olomorfe sulle sottovarietà analitiche reali d'una varietà complessa, Ann. Scuola Norm. Sup. Pisa, (3) 20 (1966), pp. 31-44. Zbl0154.33501MR206992
Citations in EuDML Documents
top- M. Salah Baouendi, Linda Preiss Rothschild, Jörg Winkelmann, Dimitri Zaitsev, Lie group structures on groups of diffeomorphisms and applications to CR manifolds
- Hidetaka Hamada, Tatsuhiro Honda, A characterization of linear automorphisms of the Euclidean ball
- R. Lehmann, D. Feldmueller, Homogeneous -hypersurface-structures on spheres
- Andrea Altomani, Costantino Medori, Mauro Nacinovich, On Homogeneous and Symmetric CR Manifolds
- Andreas Krüger, Homogeneous Cauchy-Riemann structures
- Mauro Nacinovich, The Contribution of A. Andreotti to the Theory of Complexes of p.d.o.'s
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.