Homogeneous Cauchy-Riemann structures
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1991)
- Volume: 18, Issue: 2, page 193-212
- ISSN: 0391-173X
Access Full Article
topHow to cite
topKrüger, Andreas. "Homogeneous Cauchy-Riemann structures." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 18.2 (1991): 193-212. <http://eudml.org/doc/84099>.
@article{Krüger1991,
author = {Krüger, Andreas},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {-homogeneous; almost CR structures},
language = {eng},
number = {2},
pages = {193-212},
publisher = {Scuola normale superiore},
title = {Homogeneous Cauchy-Riemann structures},
url = {http://eudml.org/doc/84099},
volume = {18},
year = {1991},
}
TY - JOUR
AU - Krüger, Andreas
TI - Homogeneous Cauchy-Riemann structures
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1991
PB - Scuola normale superiore
VL - 18
IS - 2
SP - 193
EP - 212
LA - eng
KW - -homogeneous; almost CR structures
UR - http://eudml.org/doc/84099
ER -
References
top- [1] A. Andreotti - G.A. Fredricks, Embeddability of real analytic Cauchy-Riemann manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Vol. VI, 1 (1979), 285-304, MR 80h: 32019. Zbl0449.32008MR541450
- [2] H. Azad, Levi-Curvature of manifolds with a Stein rational fibration, Manuscripta Math, 50 (1985), 269-311, MR 87i: 32046. Zbl0577.32013MR784146
- [3] H. Azad - A. Huckleberry - W. Richthofer, Homogeneous CR-manifolds, J. Reine Angew. Math.358 (1985), 125-154, MR 87g: 32035. Zbl0553.32016MR797679
- [4] M.S. Baouendi - L.P. Rothschild, Embeddability of abstract CR structures and integrability of related systems, Ann. Inst. Fourier(Grenoble) 37.3 (1987), 131-141 (Their notion of "integrability" is different from the one adopted in this paper), MR 89c: 32053. Zbl0619.58001MR916277
- [5] M.S. Baouendi - L.P. Rothschild - F. Treves, CR structures with group action and extendability of CR functions, Invent. Math.82 (1985), 359-396, MR 87: 32028. Zbl0598.32019MR809720
- [6] A. Borel, Some remarks about Lie groups transitive on spheres and tori, Bull. Amer. Math. Soc.55 (1949), 580-587, MR 10-680. Zbl0034.01603MR29915
- [7] A. Borel, Le plan projectif des octaves et les sphères comme espaces homogènes, C.R. Acad. Sci. Paris230 (1950), 1378-1380, MR 11-640. Zbl0041.52203MR34768
- [8] D. Burns, JR. - S. Shnider, Spherical hypersurfaces in complex manifolds, Invent. Math.33 (1976) 3, 223-246, MR 54# 7875. Zbl0357.32012MR419857
- [9] F. Ehlers - W.D. Neumann - J. Scherk, Links of surface singularities and CR space forms, Comment. Math. Helv.62 (1987), 240-264, MR 88k: 32022. Zbl0626.32032MR896096
- [10] D. Feldmueller - R. Lehmann, Homogeneous CR-hypersurface-structures on spheres, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 14 (1987), 513-525. Zbl0658.32014MR963488
- [11] A. Frölicher, Zur Differentialgeometrie der komplexen Strukturen, Math. Ann.129 (1955), 50-95, MR 16-857. Zbl0068.35904MR68282
- [12] H. Gluck - F. Warner - W. Ziller, The geometry of the Hopf fibrations, Enseign. Math (2) 32 (1986), 173-198, MR 88e: 53067. Zbl0616.53038MR874686
- [13] S.J. Greenfield, Cauchy-Riemann equations in several variables, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 12 (1968), 275-314, MR 38# 6097. Zbl0159.37502MR237816
- [14] R. Harvey - H.B. LawsonJr., Calibrated geometries, Acta Math.148, (Uppsala1982), 47-157, MR 85i: 53058. Zbl0584.53021MR666108
- [15] W.-C. Hsiang - W.-Y. Hsiang, Classification of differentiable actions on Sn, Rn, and Dn with Sk as the principal orbit type, Ann. of Math. (2) 82 (1965), 421-433, MR 31# 5922. Zbl0132.19801MR181695
- [16] A.T. Huckleberry - W. Richthofer, Recent developments in homogeneous CRhypersurfaces, in: A. Howard, P.-M. Wong (eds.): Contributions to several complex variables, (proceedings of a conference in honor of Wilhelm Stoll, held at Notre Dame, October, 1984) Vieweg Verlag, Braunschweig1986, ISBN 3-528-08964-4, 149-177, MR 87k: 32057. Zbl0596.32038
- [17] A.T. Huckleberry - D.M. Snow, Almost-homogeneous Kähler manifolds with hypersurface orbits, Osaka J. Math.19 (1982), 763-786, MR 84i: 32042. Zbl0507.32023MR687772
- [18] A. Krüger, Homogeneous Cauchy-Riemann structures, Dissertation at the University of Notre Dame, IN, USA, April 1985; available through University Microfilms International, Ann Arbor, MI, USA. Zbl0787.32022
- [19] J.L. Koszul, Sur la forme hermitienne canonique des espaces homogènes complexes, Canad. J. Math.7 (1955), 562-576, MR 17-1109. Zbl0066.16104MR77879
- [20] F.M. Malyšev, Complex homogeneous spaces of semisimple Lie groups of the first category, Math. USSR-Izv.9 (1975), 939-950, MR 53# 5953. Zbl0338.53036MR402132
- [21] F.M. Malyšev, Complex homogeneous spaces of the Lie group SO(2k+1,2l+1), Math. USSR-Izv.10 (1976), no. 4, 763-782, MR 54# 7876. Zbl0372.53026MR419858
- [22] F.M. Malyšev, Complex homogeneous spaces of semisimple Lie groups of type Dn, Math, USSR-Izv. 11 (1977), no. 4, MR 58# 17238. Zbl0388.53015
- [23] D. Montgomery, Simply connected homogeneous spaces, Proc. Amer. Math. Soc.1 (1950), 467-469, MR12-242. Zbl0041.36309MR37311
- [24] D. Montgomery - H. Samelson, Transformation groups on spheres, Ann. of Math. 44.3 (1943), 454-470, MR 5-60. Zbl0063.04077MR8817
- [25] A. Morimoto - T. Nagano, On pseudo-conformal transformations of hypersurfaces, J. Math. Soc. Japan15.3 (1963), 289-300, MR 27# 5275. Zbl0119.06701MR155341
- [26] A.L. Oniščik, On Lie groups transitive on compact manifolds III, Math. USSR-Sb.4.2 (1968), 233-240, MR 36# 6547, see also MR 40# 5795. Zbl0198.29001
- [27] A.L. Oniščik, Decompositions of reductive Lie groups, Math. USSR-Sb. 9.4 (1969), 515-554, MR 43# 3393. Zbl0227.22013MR277660
- [28] J. Poncet, Groupes de Lie compacts de transformations de l'espace euclidien et les sphères comme espaces homogènes, Comment. Math. Helv.33 (1959), 109-120, MR 21# 2708. Zbl0084.19006MR103946
- [29] H. Samelson, A class of complex-analytic manifolds, Portugal. Math.12 (1953), 129-132, MR 15-505. Zbl0052.02405MR59287
- [30] T. Sasaki, Classification of left invariant complex structures on GL(2,R) and U(2), Kumamoto J. Math.14 (1981), 115-123, MR 84b: 53050. Zbl0447.32007MR621095
- [31] T. Sasaki, Classification of left invariant complex structures on SL(3,R), Kumamoto J. Math.15 (1982), 59-72, MR 84c: 32034. Zbl0509.32020MR671021
- [32] D.M. Snow, Invariant complex structures on reductive Lie groups, J. Reine Angew. Math.371 (1986), 191-215, MR 87k: 32058. Zbl0588.22007MR859325
- [33] H.C. Wang, Closed manifolds with homogeneous complex structure, Amer. J. Math.76 (1954), 1-32, MR 16-518. Zbl0055.16603MR66011
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.