Homogeneous Cauchy-Riemann structures

Andreas Krüger

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1991)

  • Volume: 18, Issue: 2, page 193-212
  • ISSN: 0391-173X

How to cite

top

Krüger, Andreas. "Homogeneous Cauchy-Riemann structures." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 18.2 (1991): 193-212. <http://eudml.org/doc/84099>.

@article{Krüger1991,
author = {Krüger, Andreas},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {-homogeneous; almost CR structures},
language = {eng},
number = {2},
pages = {193-212},
publisher = {Scuola normale superiore},
title = {Homogeneous Cauchy-Riemann structures},
url = {http://eudml.org/doc/84099},
volume = {18},
year = {1991},
}

TY - JOUR
AU - Krüger, Andreas
TI - Homogeneous Cauchy-Riemann structures
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1991
PB - Scuola normale superiore
VL - 18
IS - 2
SP - 193
EP - 212
LA - eng
KW - -homogeneous; almost CR structures
UR - http://eudml.org/doc/84099
ER -

References

top
  1. [1] A. Andreotti - G.A. Fredricks, Embeddability of real analytic Cauchy-Riemann manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Vol. VI, 1 (1979), 285-304, MR 80h: 32019. Zbl0449.32008MR541450
  2. [2] H. Azad, Levi-Curvature of manifolds with a Stein rational fibration, Manuscripta Math, 50 (1985), 269-311, MR 87i: 32046. Zbl0577.32013MR784146
  3. [3] H. Azad - A. Huckleberry - W. Richthofer, Homogeneous CR-manifolds, J. Reine Angew. Math.358 (1985), 125-154, MR 87g: 32035. Zbl0553.32016MR797679
  4. [4] M.S. Baouendi - L.P. Rothschild, Embeddability of abstract CR structures and integrability of related systems, Ann. Inst. Fourier(Grenoble) 37.3 (1987), 131-141 (Their notion of "integrability" is different from the one adopted in this paper), MR 89c: 32053. Zbl0619.58001MR916277
  5. [5] M.S. Baouendi - L.P. Rothschild - F. Treves, CR structures with group action and extendability of CR functions, Invent. Math.82 (1985), 359-396, MR 87: 32028. Zbl0598.32019MR809720
  6. [6] A. Borel, Some remarks about Lie groups transitive on spheres and tori, Bull. Amer. Math. Soc.55 (1949), 580-587, MR 10-680. Zbl0034.01603MR29915
  7. [7] A. Borel, Le plan projectif des octaves et les sphères comme espaces homogènes, C.R. Acad. Sci. Paris230 (1950), 1378-1380, MR 11-640. Zbl0041.52203MR34768
  8. [8] D. Burns, JR. - S. Shnider, Spherical hypersurfaces in complex manifolds, Invent. Math.33 (1976) 3, 223-246, MR 54# 7875. Zbl0357.32012MR419857
  9. [9] F. Ehlers - W.D. Neumann - J. Scherk, Links of surface singularities and CR space forms, Comment. Math. Helv.62 (1987), 240-264, MR 88k: 32022. Zbl0626.32032MR896096
  10. [10] D. Feldmueller - R. Lehmann, Homogeneous CR-hypersurface-structures on spheres, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 14 (1987), 513-525. Zbl0658.32014MR963488
  11. [11] A. Frölicher, Zur Differentialgeometrie der komplexen Strukturen, Math. Ann.129 (1955), 50-95, MR 16-857. Zbl0068.35904MR68282
  12. [12] H. Gluck - F. Warner - W. Ziller, The geometry of the Hopf fibrations, Enseign. Math (2) 32 (1986), 173-198, MR 88e: 53067. Zbl0616.53038MR874686
  13. [13] S.J. Greenfield, Cauchy-Riemann equations in several variables, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 12 (1968), 275-314, MR 38# 6097. Zbl0159.37502MR237816
  14. [14] R. Harvey - H.B. LawsonJr., Calibrated geometries, Acta Math.148, (Uppsala1982), 47-157, MR 85i: 53058. Zbl0584.53021MR666108
  15. [15] W.-C. Hsiang - W.-Y. Hsiang, Classification of differentiable actions on Sn, Rn, and Dn with Sk as the principal orbit type, Ann. of Math. (2) 82 (1965), 421-433, MR 31# 5922. Zbl0132.19801MR181695
  16. [16] A.T. Huckleberry - W. Richthofer, Recent developments in homogeneous CRhypersurfaces, in: A. Howard, P.-M. Wong (eds.): Contributions to several complex variables, (proceedings of a conference in honor of Wilhelm Stoll, held at Notre Dame, October, 1984) Vieweg Verlag, Braunschweig1986, ISBN 3-528-08964-4, 149-177, MR 87k: 32057. Zbl0596.32038
  17. [17] A.T. Huckleberry - D.M. Snow, Almost-homogeneous Kähler manifolds with hypersurface orbits, Osaka J. Math.19 (1982), 763-786, MR 84i: 32042. Zbl0507.32023MR687772
  18. [18] A. Krüger, Homogeneous Cauchy-Riemann structures, Dissertation at the University of Notre Dame, IN, USA, April 1985; available through University Microfilms International, Ann Arbor, MI, USA. Zbl0787.32022
  19. [19] J.L. Koszul, Sur la forme hermitienne canonique des espaces homogènes complexes, Canad. J. Math.7 (1955), 562-576, MR 17-1109. Zbl0066.16104MR77879
  20. [20] F.M. Malyšev, Complex homogeneous spaces of semisimple Lie groups of the first category, Math. USSR-Izv.9 (1975), 939-950, MR 53# 5953. Zbl0338.53036MR402132
  21. [21] F.M. Malyšev, Complex homogeneous spaces of the Lie group SO(2k+1,2l+1), Math. USSR-Izv.10 (1976), no. 4, 763-782, MR 54# 7876. Zbl0372.53026MR419858
  22. [22] F.M. Malyšev, Complex homogeneous spaces of semisimple Lie groups of type Dn, Math, USSR-Izv. 11 (1977), no. 4, MR 58# 17238. Zbl0388.53015
  23. [23] D. Montgomery, Simply connected homogeneous spaces, Proc. Amer. Math. Soc.1 (1950), 467-469, MR12-242. Zbl0041.36309MR37311
  24. [24] D. Montgomery - H. Samelson, Transformation groups on spheres, Ann. of Math. 44.3 (1943), 454-470, MR 5-60. Zbl0063.04077MR8817
  25. [25] A. Morimoto - T. Nagano, On pseudo-conformal transformations of hypersurfaces, J. Math. Soc. Japan15.3 (1963), 289-300, MR 27# 5275. Zbl0119.06701MR155341
  26. [26] A.L. Oniščik, On Lie groups transitive on compact manifolds III, Math. USSR-Sb.4.2 (1968), 233-240, MR 36# 6547, see also MR 40# 5795. Zbl0198.29001
  27. [27] A.L. Oniščik, Decompositions of reductive Lie groups, Math. USSR-Sb. 9.4 (1969), 515-554, MR 43# 3393. Zbl0227.22013MR277660
  28. [28] J. Poncet, Groupes de Lie compacts de transformations de l'espace euclidien et les sphères comme espaces homogènes, Comment. Math. Helv.33 (1959), 109-120, MR 21# 2708. Zbl0084.19006MR103946
  29. [29] H. Samelson, A class of complex-analytic manifolds, Portugal. Math.12 (1953), 129-132, MR 15-505. Zbl0052.02405MR59287
  30. [30] T. Sasaki, Classification of left invariant complex structures on GL(2,R) and U(2), Kumamoto J. Math.14 (1981), 115-123, MR 84b: 53050. Zbl0447.32007MR621095
  31. [31] T. Sasaki, Classification of left invariant complex structures on SL(3,R), Kumamoto J. Math.15 (1982), 59-72, MR 84c: 32034. Zbl0509.32020MR671021
  32. [32] D.M. Snow, Invariant complex structures on reductive Lie groups, J. Reine Angew. Math.371 (1986), 191-215, MR 87k: 32058. Zbl0588.22007MR859325
  33. [33] H.C. Wang, Closed manifolds with homogeneous complex structure, Amer. J. Math.76 (1954), 1-32, MR 16-518. Zbl0055.16603MR66011

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.