Cauchy-Stieltjes integrals on strongly pseudoconvex domains

Edgar Lee Stout

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1979)

  • Volume: 6, Issue: 4, page 685-702
  • ISSN: 0391-173X

How to cite

top

Lee Stout, Edgar. "Cauchy-Stieltjes integrals on strongly pseudoconvex domains." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 6.4 (1979): 685-702. <http://eudml.org/doc/83825>.

@article{LeeStout1979,
author = {Lee Stout, Edgar},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Cauchy-Stieltjes integrals; reproducing kernel; strictly pseudoconvex domain; Hardy space; algebra of holomorphic functions},
language = {eng},
number = {4},
pages = {685-702},
publisher = {Scuola normale superiore},
title = {Cauchy-Stieltjes integrals on strongly pseudoconvex domains},
url = {http://eudml.org/doc/83825},
volume = {6},
year = {1979},
}

TY - JOUR
AU - Lee Stout, Edgar
TI - Cauchy-Stieltjes integrals on strongly pseudoconvex domains
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1979
PB - Scuola normale superiore
VL - 6
IS - 4
SP - 685
EP - 702
LA - eng
KW - Cauchy-Stieltjes integrals; reproducing kernel; strictly pseudoconvex domain; Hardy space; algebra of holomorphic functions
UR - http://eudml.org/doc/83825
ER -

References

top
  1. [1] P. Duren, Theory of Hp-Spaces, Academic Press, New York, 1970. Zbl0215.20203MR268655
  2. [2] M. Elgueta, Extension of functions holomorphic in a submanifold in general position and C∞ up to the boundary to strictly pseudoconvex domains, Dissertation, University of Wisconsin, Madison, 1975. 
  3. [3] J.E. Fornaess, Embedding strictly pseudoconvex domains in convex domains, Amer. J. Math., 98 (1976), pp. 529-569. Zbl0334.32020MR422683
  4. [4] G.M. Henkin, Integral representations of functions holomorphic in strictly pseudoconvex domains and some applications, Mat. Sb., 78 (1969), pp. 611-632 (English translation: Math. USSR-Sb., 7 (1969), pp. 597-616). Zbl0208.35102MR249660
  5. [5] N. Kerzman - E.M. Stein, The Szegö kernel in terms of the Cauchy-Fantappiè kernels, Duke Math. J., 45 (1978), pp. 197-224. Zbl0387.32009MR508154
  6. [6] A. Nagel, Cauchy transformations of measures, and a characterization of smooth peak interpolation sets for the ball algebra, RockyMountain J. Math., 9 (1979), pp. 299-305. Zbl0424.32003MR519944
  7. [7] I.I. Priwalow: Randeigenschaften Analytischer Funktionen, VEB Deutscher Verlag der Wissenschaften, Berlin, 1956. Zbl0073.06501MR83565
  8. [8] E. Ramírez De Arellano, Ein Divisionproblem und Randintegraldarstellungen in der Komplexen Analysis, Math. Ann., 184 (1970), pp. 172-187. Zbl0189.09702MR269874
  9. [9] W. Rudin, The radial variation of analytic functions, Duke Math. J., 22 (1955), pp. 235-242. Zbl0064.31105MR79093
  10. [10] K.T. Smith, Primer of Modern Analysis, Bogden and Quigley, Tarrytown-on-Hudson, 1971. Zbl0517.26001
  11. [11] E.L. Stout, Hp-functions on strictly pseudoconvex domains, Amer. J. Math., 98 (1976), pp. 821-852. Zbl0341.32013MR422685
  12. [12] N. Øvrelid, Integral representation formulas and Lp-estimates for the ∂-equation, Math. Scand., 29 (1971), pp. 137-160. Zbl0227.35069

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.