The class of holomorphic functions representable by Carleman formula

Lev Aizenberg; Alexander Tumanov; Alekos Vidras

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1998)

  • Volume: 27, Issue: 1, page 93-105
  • ISSN: 0391-173X

How to cite

top

Aizenberg, Lev, Tumanov, Alexander, and Vidras, Alekos. "The class of holomorphic functions representable by Carleman formula." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 27.1 (1998): 93-105. <http://eudml.org/doc/84356>.

@article{Aizenberg1998,
author = {Aizenberg, Lev, Tumanov, Alexander, Vidras, Alekos},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Carleman formula; holomorphic functions of one and several variables; Ahlfors regular curve; convex domain},
language = {eng},
number = {1},
pages = {93-105},
publisher = {Scuola normale superiore},
title = {The class of holomorphic functions representable by Carleman formula},
url = {http://eudml.org/doc/84356},
volume = {27},
year = {1998},
}

TY - JOUR
AU - Aizenberg, Lev
AU - Tumanov, Alexander
AU - Vidras, Alekos
TI - The class of holomorphic functions representable by Carleman formula
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1998
PB - Scuola normale superiore
VL - 27
IS - 1
SP - 93
EP - 105
LA - eng
KW - Carleman formula; holomorphic functions of one and several variables; Ahlfors regular curve; convex domain
UR - http://eudml.org/doc/84356
ER -

References

top
  1. [1] L. Aizenberg, "Carleman's Formulas in Complex Analysis", Kluwer, 1993. Zbl0783.32002
  2. [2] L. Aizenberg, Carleman's Formulas and conditions for analytic extendability, Topics in Complex Analysis, Banach Center Publications31 (1995), 27-34. Zbl0827.32009MR1341372
  3. [3] L. Aizenberg, On certain boundary properties of analytic functionsof many complex variables, Research in modern problems of theory of functions of a complex variable, "Nauka" Moscow (1961), 239-241 (Russian). 
  4. [4] L. Aizenberg - A. Yuzhakov, "Integral representations and residues in multidimensional complex analysis", AMS, 1983. Zbl0537.32002MR735793
  5. [5] L. Aizenberg - B.C. Mityagin, The spaces offunctions analytic in multicircular domains, Sibirsk. Mat. Zh.1 (1960), 1953-1970 (Russian). 
  6. [6] L. Aizenberg - A. Kytmanov, On the holomorphic extendability offunctions given on a connected part of the boundary.II, Mat. Sb.79 (1993). 
  7. [7] R. Coifman - G. David - Y. Meyer, La solution des conjectures de Calderon, Adv. Math.48 (1983), 144-148. Zbl0518.42024MR700980
  8. [8] R. Coifman - A. McIntosh - Y. Meyer, L' integrale de Cauchy definit l'un operateur borne sur L2 pour les courbes lipschitziennes, Ann. of Math.116 (1982), 361-387. Zbl0497.42012MR672839
  9. [9] G. David, Operateurs integraux singuliers sur certaines courbes du plain complex, Ann. Sci. École Norm. Sup17 (1984), 157-189. Zbl0537.42016MR744071
  10. [10] P.L. Duren, "The theory of Hp spaces", Acad. Press, 1970. Zbl0215.20203
  11. [11] J.B. Garnett, "Bounded analytic functions", Acad. Press, 1981. Zbl0469.30024MR628971
  12. [12] G.M. Goluzin, "Geometric theory of functions of a complex variable", AMS 1969. Zbl0183.07502
  13. [13] G.M. Goluzin - V.I. Krylov, Generalized Carleman formula and its applications to analytic extension offunctions, Mat. Sb.40 (1933), 144-149, (Russian). 
  14. [14] G.M. Henkin - E.M. Chirka, Boundary properties of holomorphic functions of several complex variables, J. Soviet Math.5 (1976), 612-687. Zbl0375.32005
  15. [15] L. Hormander, LP estimates for (pluri-) subharmonic functions, Math. Scand.20 (1967), 65-78. Zbl0156.12201MR234002
  16. [16] I.I. Privalov, "Randeigenschaften Analytischer Functionen", Deutscher V. der Wiss., 1956. Zbl0073.06501
  17. [17] W. Rudin, "Function theory in the unit ball", Springer Verlag, 1980. Zbl0495.32001MR601594
  18. [18] E.L. Stout, Cauchy-Stieltjes integrals on striclty pseudoconvex domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 6 (1979), 685-702. Zbl0435.32008MR563339

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.