Threefolds of non negative Kodaira dimension with sectional genus less than or equal to 15

Elvira Laura Livorni; Andrew John Sommese

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1986)

  • Volume: 13, Issue: 4, page 537-558
  • ISSN: 0391-173X

How to cite

top

Livorni, Elvira Laura, and Sommese, Andrew John. "Threefolds of non negative Kodaira dimension with sectional genus less than or equal to 15." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 13.4 (1986): 537-558. <http://eudml.org/doc/83990>.

@article{Livorni1986,
author = {Livorni, Elvira Laura, Sommese, Andrew John},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {non-negative Kodaira dimension; numerical invariants; sectional genus; minimal surface; threefold},
language = {eng},
number = {4},
pages = {537-558},
publisher = {Scuola normale superiore},
title = {Threefolds of non negative Kodaira dimension with sectional genus less than or equal to 15},
url = {http://eudml.org/doc/83990},
volume = {13},
year = {1986},
}

TY - JOUR
AU - Livorni, Elvira Laura
AU - Sommese, Andrew John
TI - Threefolds of non negative Kodaira dimension with sectional genus less than or equal to 15
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1986
PB - Scuola normale superiore
VL - 13
IS - 4
SP - 537
EP - 558
LA - eng
KW - non-negative Kodaira dimension; numerical invariants; sectional genus; minimal surface; threefold
UR - http://eudml.org/doc/83990
ER -

References

top
  1. [B] H.F. Baker, Principles of Geometry, vol. V, Cambridge, 1933. Zbl0008.21906JFM59.0620.04
  2. [Ba-P-V] W. Barth - C. Peters - A. Van De Ven, Compact Complex Surfaces, Springer-Verlag, Berlin - Heidelberg - New York (1984). Zbl0718.14023MR749574
  3. [Ba] W. Barth, Larsen's theorem on homotopy groups of projective manifolds Of small embedding codimension, Proc. Sympos. Pure Math., 29 (1975), pp. 307-313. Zbl0309.14017MR377123
  4. [F] W. Fulton, Intersection Theory, Springer-Verlag, Berlin - Heidelberg - New York (1984). Zbl0541.14005MR732620
  5. [Gr-H] P.A. Griffiths - J. Harris, Residues and zero cycles on algebraic varieties, Ann. of Math., 108 (1978), pp. 461-505. Zbl0423.14001MR512429
  6. [Be] A. Beauville, Variétés kähleriennes dont la première classe de Chern est nulle, J. Differential Geom., 18 (1983), pp. 755-782. Zbl0537.53056MR730926
  7. [Hal] R. Hartshorne, Ample subvarieties of algebraic varieties, Lecture Notes in Math.156, Berlin - Heidelberg - New York (1970). Zbl0208.48901MR282977
  8. [Ha2] R. Hartshorne, Algebraic Geometry, Springer-Verlag, Berlin - Heidelberg- New York (1977). Zbl0367.14001MR463157
  9. [Ho-Sc] A. Holme - M. Schneider, A computer aided approach to codimension 2 subvarieties of Pn, n ≽ 6, preprint. 
  10. [K] Y. Kawamata, A generalization of Kodaira-Ramanujam's vanishing theorem, Math. Ann., 261 (1982), pp. 43-46. Zbl0476.14007MR675204
  11. [R] M. Reid, Canonical 3-folds, « Algebraic Geometry», ed. by A. Beauville, Siythoff & Noordholf, Netherlands (1980). Zbl0451.14014MR605348
  12. [Sh-So] B. Shiffman - A.J. Sommese, Vanishing theorems on complex manifolds, to appear in Progr. Math., Birkhauser. Zbl0578.32055MR782484
  13. [So1] A.J. Sommese, Complex subspaces of homogeneous complex manifolds.- II: Homotopy results, Nagoya Math. J., 86 (1982), pp. 101-129. Zbl0497.32026MR661221
  14. [So2] A.J. Sommese, Hyperplane sections of projective surfaces. - I : The adjunction mapping, Duke Math. J., 46 (1979), pp. 377-401. Zbl0415.14019MR534057
  15. [So3] A.J. Sommese, On the minimality of hyperplane sections of projective threefolds, J. Reine Angew. Math., 329 (1981), pp. 16-41. Zbl0509.14044MR636441
  16. [V] E. Viehweg, Vanishing theorems, J. Reine Angew. Math., 355 (1982),. pp. 1-8. Zbl0485.32019MR667459

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.