Critical points of solutions of elliptic equations in two variables
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1987)
- Volume: 14, Issue: 2, page 229-256
- ISSN: 0391-173X
Access Full Article
topHow to cite
topAlessandrini, Giovanni. "Critical points of solutions of elliptic equations in two variables." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 14.2 (1987): 229-256. <http://eudml.org/doc/84005>.
@article{Alessandrini1987,
author = {Alessandrini, Giovanni},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {uniformly elliptic; critical points; Dirichlet data},
language = {eng},
number = {2},
pages = {229-256},
publisher = {Scuola normale superiore},
title = {Critical points of solutions of elliptic equations in two variables},
url = {http://eudml.org/doc/84005},
volume = {14},
year = {1987},
}
TY - JOUR
AU - Alessandrini, Giovanni
TI - Critical points of solutions of elliptic equations in two variables
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1987
PB - Scuola normale superiore
VL - 14
IS - 2
SP - 229
EP - 256
LA - eng
KW - uniformly elliptic; critical points; Dirichlet data
UR - http://eudml.org/doc/84005
ER -
References
top- [1] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Comm. Pure Appl. Math.12, 623-727 (1959). Zbl0093.10401MR125307
- [2] G. Alessandrini, An identification problem for an elliptic equation in two variables, Ann. Mat. Pura Appl. (4) 145, 265-296 (1986). Zbl0662.35118MR886713
- [3] S. Bernstein, Sur la généralization du problème de Dirichlet (I), Math. Ann.62, 253-271 (1906). Zbl37.0383.01MR1511375JFM37.0383.01
- [4] L. Bers and L. Nirenberg, On a representation theorem for linear elliptic systems with discontinuous coefficient.s and its applications, in: Convegno Internazionale sulle Equazioni Lineari alle Derivate Parziali, Trieste, 111-140, Cremonese, Roma, 1955. Zbl0067.32503MR76981
- [5] D. Gilbarg and J. Serrin, On isolated singularities of solutions of second order elliptic differential equations, J. Analyse Math.4, 309-340 (1956). Zbl0071.09701MR81416
- [6] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983. Zbl0562.35001MR737190
- [7] P. Hartman and A. Wintner, On the local behaviour of solutions of non-parabolic partial differential equations (I), Amer. J. Math.75, 449-476 (1953). Zbl0052.32201MR58082
- [8] P. Hartman and A. Wintner, On the local behaviour of solutions of non-parabolic partial differential equations (II) The uniqueness of the Green singularity, Amer. J. Math.76, 351-361 (1954). Zbl0055.32403MR64271
- [9] P. Hartman and A. Wintner, On the local behaviour of solutions of non-parabolic partial differential equations (III) Approximation by spherical harmonics, Amer. J. Math.77, 329-354 (1955). Zbl0066.08001MR76156
- [10] K. Miller, Barriers on cones for uniformly elliptic operators, Ann. Mat. Pura Appl. (4) 76, 93-105 (1967). Zbl0149.32101MR221087
- [11] L.A. Peletier and J. Serrin, Gradient bounds and Liouville theorems for quasilinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., (4) 5, 65-104 (1978). Zbl0383.35025MR481493
- [12] T. Radó, The problem of the least area and the problem of Plateau, Math. Z.32, 763-796 (1930). Zbl56.0436.01MR1545197JFM56.0436.01
- [13] J. Serrin, Removable singularities of solutions of elliptic equations, Arc. Rat. Mech. Anal.17, 67-78 (1964). Zbl0135.15601MR170095
- [14] R.P. Sperb, Maximum Principles and their Applications, Academic Press, New York, 1981. Zbl0454.35001MR615561
- [15] G. Talenti, Equazioni lineari ellittiche in due variabili, Matematiche (Catania) 21, 339-376 (1966). Zbl0149.07402MR204845
- [16] J.L. Walsh, The Location of Critical Points of Analytic and Harmonic Functions, American Mathematical Society, New York, 1950. Zbl0041.04101MR37350
Citations in EuDML Documents
top- Shigeru Sakaguchi, Critical points of solutions to the obstacle problem in the plane
- G. Alessandrini, R. Magnanini, The index of isolated critical points and solutions of elliptic equations in the plane
- B. Helffer, T. Hoffmann-Ostenhof, S. Terracini, Nodal domains and spectral minimal partitions
- Mikhail Karpukhin, Gerasim Kokarev, Iosif Polterovich, Multiplicity bounds for Steklov eigenvalues on Riemannian surfaces
- Bernard Helffer, Domaines nodaux et partitions spectrales minimales
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.