Multiplicity bounds for Steklov eigenvalues on Riemannian surfaces
Mikhail Karpukhin[1]; Gerasim Kokarev[2]; Iosif Polterovich[3]
- [1] Moscow State University Department of Geometry and Topology Leninskie Gory, GSP-1, 119991, Moscow (Russia) Independent University of Moscow Bolshoy Vlasyevskiy pereulok 11, 119002 Moscow (Russia)
 - [2] Mathematisches Institut der Universität München Theresienstr. 39, D-80333 München (Germany)
 - [3] Université de Montréal Département de mathématiques et de statistique CP 6128 succ Centre-Ville Montréal, QC H3C 3J7 (Canada)
 
Annales de l’institut Fourier (2014)
- Volume: 64, Issue: 6, page 2481-2502
 - ISSN: 0373-0956
 
Access Full Article
topAbstract
topHow to cite
topKarpukhin, Mikhail, Kokarev, Gerasim, and Polterovich, Iosif. "Multiplicity bounds for Steklov eigenvalues on Riemannian surfaces." Annales de l’institut Fourier 64.6 (2014): 2481-2502. <http://eudml.org/doc/275456>.
@article{Karpukhin2014,
	abstract = {We prove two explicit bounds for the multiplicities of Steklov eigenvalues $\sigma _k$ on compact surfaces with boundary. One of the bounds depends only on the genus of a surface and the index $k$ of an eigenvalue, while the other depends as well on the number of boundary components. We also show that on any given Riemannian surface with smooth boundary the multiplicities of Steklov eigenvalues $\sigma _k$ are uniformly bounded in $k$.},
	affiliation = {Moscow State University Department of Geometry and Topology Leninskie Gory, GSP-1, 119991, Moscow (Russia) Independent University of Moscow Bolshoy Vlasyevskiy pereulok 11, 119002 Moscow (Russia); Mathematisches Institut der Universität München Theresienstr. 39, D-80333 München (Germany); Université de Montréal Département de mathématiques et de statistique CP 6128 succ Centre-Ville Montréal, QC H3C 3J7 (Canada)},
	author = {Karpukhin, Mikhail, Kokarev, Gerasim, Polterovich, Iosif},
	journal = {Annales de l’institut Fourier},
	keywords = {Steklov problem; eigenvalue multiplicity; Riemannian surface; nodal sets, nodal domains; nodal graphs},
	language = {eng},
	number = {6},
	pages = {2481-2502},
	publisher = {Association des Annales de l’institut Fourier},
	title = {Multiplicity bounds for Steklov eigenvalues on Riemannian surfaces},
	url = {http://eudml.org/doc/275456},
	volume = {64},
	year = {2014},
}
TY  - JOUR
AU  - Karpukhin, Mikhail
AU  - Kokarev, Gerasim
AU  - Polterovich, Iosif
TI  - Multiplicity bounds for Steklov eigenvalues on Riemannian surfaces
JO  - Annales de l’institut Fourier
PY  - 2014
PB  - Association des Annales de l’institut Fourier
VL  - 64
IS  - 6
SP  - 2481
EP  - 2502
AB  - We prove two explicit bounds for the multiplicities of Steklov eigenvalues $\sigma _k$ on compact surfaces with boundary. One of the bounds depends only on the genus of a surface and the index $k$ of an eigenvalue, while the other depends as well on the number of boundary components. We also show that on any given Riemannian surface with smooth boundary the multiplicities of Steklov eigenvalues $\sigma _k$ are uniformly bounded in $k$.
LA  - eng
KW  - Steklov problem; eigenvalue multiplicity; Riemannian surface; nodal sets, nodal domains; nodal graphs
UR  - http://eudml.org/doc/275456
ER  - 
References
top- Giovanni Alessandrini, Critical points of solutions of elliptic equations in two variables, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987), 229-256 (1988) Zbl0649.35026MR939628
 - Giovanni Alessandrini, R. Magnanini, Elliptic equations in divergence form, geometric critical points of solutions, and Stekloff eigenfunctions, SIAM J. Math. Anal. 25 (1994), 1259-1268 Zbl0809.35070MR1289138
 - Catherine Bandle, Isoperimetric inequalities and applications, 7 (1980), Pitman (Advanced Publishing Program), Boston, Mass.-London Zbl0436.35063MR572958
 - Lipman Bers, Local behavior of solutions of general linear elliptic equations, Comm. Pure Appl. Math. 8 (1955), 473-496 Zbl0066.08101MR75416
 - Gérard Besson, Sur la multiplicité de la première valeur propre des surfaces riemanniennes, Ann. Inst. Fourier (Grenoble) 30 (1980), x, 109-128 Zbl0417.30033MR576075
 - Marc Burger, Bruno Colbois, À propos de la multiplicité de la première valeur propre du laplacien d’une surface de Riemann, C. R. Acad. Sci. Paris Sér. I Math. 300 (1985), 247-249 Zbl0574.53029MR785061
 - Shiu Yuen Cheng, Eigenfunctions and nodal sets, Comment. Math. Helv. 51 (1976), 43-55 Zbl0334.35022MR397805
 - B. Colbois, Y. Colin de Verdière, Sur la multiplicité de la première valeur propre d’une surface de Riemann à courbure constante, Comment. Math. Helv. 63 (1988), 194-208 Zbl0656.53043MR948777
 - R. Courant, D. Hilbert, Methods of mathematical physics. Vol. I, (1953), Interscience Publishers, Inc., New York, N.Y. Zbl0051.28802MR65391
 - Julian Edward, An inverse spectral result for the Neumann operator on planar domains, J. Funct. Anal. 111 (1993), 312-322 Zbl0813.47003MR1203456
 - Ailana Fraser, Richard Schoen, Eigenvalue bounds and minimal surfaces in the ball Zbl1337.35099
 - Ailana Fraser, Richard Schoen, The first Steklov eigenvalue, conformal geometry, and minimal surfaces, Adv. Math. 226 (2011), 4011-4030 Zbl1215.53052MR2770439
 - Peter Giblin, Graphs, surfaces and homology, (2010), Cambridge University Press, Cambridge Zbl1201.55001MR2722281
 - David Gilbarg, Neil S. Trudinger, Elliptic partial differential equations of second order, (2001), Springer-Verlag, Berlin Zbl1042.35002MR1814364
 - Alexandre Girouard, (2009)
 - Alexandre Girouard, Iosif Polterovich, Shape optimization for low Neumann and Steklov eigenvalues, Math. Methods Appl. Sci. 33 (2010), 501-516 Zbl1186.35121MR2641628
 - Alexandre Girouard, Iosif Polterovich, Upper bounds for Steklov eigenvalues on surfaces, Electron. Res. Announc. Math. Sci. 19 (2012), 77-85 Zbl1257.58019MR2970718
 - B. Helffer, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, M. P. Owen, Nodal sets for groundstates of Schrödinger operators with zero magnetic field in non-simply connected domains, Comm. Math. Phys. 202 (1999), 629-649 Zbl1042.81012MR1690957
 - M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, N. Nadirashvili, On the multiplicity of eigenvalues of the Laplacian on surfaces, Ann. Global Anal. Geom. 17 (1999), 43-48 Zbl0923.35109MR1674331
 - T. Hoffmann-Ostenhof, P. W. Michor, N. Nadirashvili, Bounds on the multiplicity of eigenvalues for fixed membranes, Geom. Funct. Anal. 9 (1999), 1169-1188 Zbl0949.35102MR1736932
 - Lars Hörmander, The spectral function of an elliptic operator, Acta Math. 121 (1968), 193-218 Zbl0164.13201MR609014
 - Pierre Jammes, Prescription du spectre de Steklov dans une classe conforme, Anal. PDE 7 (2014), 529-550 Zbl1304.35452MR3227426
 - J. R. Kuttler, V. G. Sigillito, An inequality of a Stekloff eigenvalue by the method of defect, Proc. Amer. Math. Soc. 20 (1969), 357-360 Zbl0176.09901MR235323
 - N. S. Nadirashvili, Multiple eigenvalues of the Laplace operator, Mat. Sb. (N.S.) 133(175) (1987), 223-237, 272 Zbl0672.35049MR905007
 - G. V. Rozenbljum, Asymptotic behavior of the eigenvalues for some two-dimensional spectral problems, Boundary value problems. Spectral theory (Russian) 7 (1979), 188-203, 245, Leningrad. Univ., Leningrad MR559110
 - M. A. Shubin, Pseudodifferential operators and spectral theory, (2001), Springer-Verlag, Berlin Zbl0616.47040MR1852334
 - Michael E. Taylor, Partial differential equations. II, 116 (1996), Springer-Verlag, New York Zbl0869.35003MR1395149
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.