On a maximum principle for weak solutions of the stationary Stokes system

J. Naumann

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1988)

  • Volume: 15, Issue: 1, page 149-168
  • ISSN: 0391-173X

How to cite

top

Naumann, J.. "On a maximum principle for weak solutions of the stationary Stokes system." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 15.1 (1988): 149-168. <http://eudml.org/doc/84023>.

@article{Naumann1988,
author = {Naumann, J.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {a priori maximum estimates},
language = {eng},
number = {1},
pages = {149-168},
publisher = {Scuola normale superiore},
title = {On a maximum principle for weak solutions of the stationary Stokes system},
url = {http://eudml.org/doc/84023},
volume = {15},
year = {1988},
}

TY - JOUR
AU - Naumann, J.
TI - On a maximum principle for weak solutions of the stationary Stokes system
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1988
PB - Scuola normale superiore
VL - 15
IS - 1
SP - 149
EP - 168
LA - eng
KW - a priori maximum estimates
UR - http://eudml.org/doc/84023
ER -

References

top
  1. [1] M.E. Bogovsku, Solution of the first boundary problem for the equation of continuity of incompressible media (Russian), Dokl. Akad. Nauk SSSR248 (1979), pp. 1037-1040. Zbl0499.35022MR553920
  2. [2] S. Campanato, Equazioni ellitiche del secondo ordine e spazi L2,λ, Ann. Mat. Pura Appl., serie IV, 69 (1965), pp. 321-381. Zbl0145.36603
  3. [3] —, Sistemi ellittici in forma divergenza. Regolarità all'interno, Quaderni, Scuola Norm. Sup., Pisa1980. Zbl0453.35026
  4. [4] P. Cannarsa, On a maximum principle for elliptic systems with constant coefficients, Rend. Sem. Mat. Univ. Padova64 (1981), pp. 77-84. Zbl0473.35016MR636627
  5. [5] M. Giaquinta - G. Modica, Nonlinear systems of the type of the Navier-Stokes system, J. reine angew. Math.330 (1982), pp. 173-214. Zbl0492.35018MR641818
  6. [6] O.A. Ladyshenskaja, Mathematical problems of the dynamics of viscous incompressible fluids (Russian), Nauka, Moscow1970. 
  7. [7] J. Naumann, On the interior regularity of weak solutions of the stationary Navier-Stokes equations, Report no. 156, Dip. Matem., Univ. Pisa1986. 
  8. [8] J. Ne, Les méthodes directes en théorie des équations elliptiques, Academia, Prague1967. MR227584
  9. [9] V.A. Solonnikov, Estimates of the solutions of the non-stationary Navier-Stokes system (Russian), Zapiski naucn. sem. LOMI, 38 (Leningrad1973), pp. 153-231. Zbl0346.35083MR415097
  10. [10] —, Stokes and Navier-Stokes equations in domains with non-compact boundaries. In: Nonlinear partial differential equations and their applications. Collège de France Seminar, vol. IV. H. Brézis, J.L. Lions (editors); Pitman, Boston, London1983; pp. 240-349. Zbl0547.35102
  11. [11] V.A. Solonnikov - V.E. Š, On a boundary value problem for the stationary system of Navier-Stokes equations (Russian), Trudy Mat. Inst. Steklov125 (1973), pp. 196-210. Engl. transl.: Proc. Steklov Inst. Math.125 (1973), pp. 186-199. Zbl0313.35063MR364910

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.