On a maximum principle for weak solutions of the stationary Stokes system
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1988)
- Volume: 15, Issue: 1, page 149-168
- ISSN: 0391-173X
Access Full Article
topHow to cite
topReferences
top- [1] M.E. Bogovsku, Solution of the first boundary problem for the equation of continuity of incompressible media (Russian), Dokl. Akad. Nauk SSSR248 (1979), pp. 1037-1040. Zbl0499.35022MR553920
- [2] S. Campanato, Equazioni ellitiche del secondo ordine e spazi L2,λ, Ann. Mat. Pura Appl., serie IV, 69 (1965), pp. 321-381. Zbl0145.36603
- [3] —, Sistemi ellittici in forma divergenza. Regolarità all'interno, Quaderni, Scuola Norm. Sup., Pisa1980. Zbl0453.35026
- [4] P. Cannarsa, On a maximum principle for elliptic systems with constant coefficients, Rend. Sem. Mat. Univ. Padova64 (1981), pp. 77-84. Zbl0473.35016MR636627
- [5] M. Giaquinta - G. Modica, Nonlinear systems of the type of the Navier-Stokes system, J. reine angew. Math.330 (1982), pp. 173-214. Zbl0492.35018MR641818
- [6] O.A. Ladyshenskaja, Mathematical problems of the dynamics of viscous incompressible fluids (Russian), Nauka, Moscow1970.
- [7] J. Naumann, On the interior regularity of weak solutions of the stationary Navier-Stokes equations, Report no. 156, Dip. Matem., Univ. Pisa1986.
- [8] J. Ne, Les méthodes directes en théorie des équations elliptiques, Academia, Prague1967. MR227584
- [9] V.A. Solonnikov, Estimates of the solutions of the non-stationary Navier-Stokes system (Russian), Zapiski naucn. sem. LOMI, 38 (Leningrad1973), pp. 153-231. Zbl0346.35083MR415097
- [10] —, Stokes and Navier-Stokes equations in domains with non-compact boundaries. In: Nonlinear partial differential equations and their applications. Collège de France Seminar, vol. IV. H. Brézis, J.L. Lions (editors); Pitman, Boston, London1983; pp. 240-349. Zbl0547.35102
- [11] V.A. Solonnikov - V.E. Š, On a boundary value problem for the stationary system of Navier-Stokes equations (Russian), Trudy Mat. Inst. Steklov125 (1973), pp. 196-210. Engl. transl.: Proc. Steklov Inst. Math.125 (1973), pp. 186-199. Zbl0313.35063MR364910