On a maximum principle for weak solutions of the stationary Stokes system

J. Naumann

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1988)

  • Volume: 15, Issue: 1, page 149-168
  • ISSN: 0391-173X

How to cite

top

Naumann, J.. "On a maximum principle for weak solutions of the stationary Stokes system." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 15.1 (1988): 149-168. <http://eudml.org/doc/84023>.

@article{Naumann1988,
author = {Naumann, J.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {a priori maximum estimates},
language = {eng},
number = {1},
pages = {149-168},
publisher = {Scuola normale superiore},
title = {On a maximum principle for weak solutions of the stationary Stokes system},
url = {http://eudml.org/doc/84023},
volume = {15},
year = {1988},
}

TY - JOUR
AU - Naumann, J.
TI - On a maximum principle for weak solutions of the stationary Stokes system
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1988
PB - Scuola normale superiore
VL - 15
IS - 1
SP - 149
EP - 168
LA - eng
KW - a priori maximum estimates
UR - http://eudml.org/doc/84023
ER -

References

top
  1. [1] M.E. Bogovsku, Solution of the first boundary problem for the equation of continuity of incompressible media (Russian), Dokl. Akad. Nauk SSSR248 (1979), pp. 1037-1040. Zbl0499.35022MR553920
  2. [2] S. Campanato, Equazioni ellitiche del secondo ordine e spazi L2,λ, Ann. Mat. Pura Appl., serie IV, 69 (1965), pp. 321-381. Zbl0145.36603
  3. [3] —, Sistemi ellittici in forma divergenza. Regolarità all'interno, Quaderni, Scuola Norm. Sup., Pisa1980. Zbl0453.35026
  4. [4] P. Cannarsa, On a maximum principle for elliptic systems with constant coefficients, Rend. Sem. Mat. Univ. Padova64 (1981), pp. 77-84. Zbl0473.35016MR636627
  5. [5] M. Giaquinta - G. Modica, Nonlinear systems of the type of the Navier-Stokes system, J. reine angew. Math.330 (1982), pp. 173-214. Zbl0492.35018MR641818
  6. [6] O.A. Ladyshenskaja, Mathematical problems of the dynamics of viscous incompressible fluids (Russian), Nauka, Moscow1970. 
  7. [7] J. Naumann, On the interior regularity of weak solutions of the stationary Navier-Stokes equations, Report no. 156, Dip. Matem., Univ. Pisa1986. 
  8. [8] J. Ne, Les méthodes directes en théorie des équations elliptiques, Academia, Prague1967. MR227584
  9. [9] V.A. Solonnikov, Estimates of the solutions of the non-stationary Navier-Stokes system (Russian), Zapiski naucn. sem. LOMI, 38 (Leningrad1973), pp. 153-231. Zbl0346.35083MR415097
  10. [10] —, Stokes and Navier-Stokes equations in domains with non-compact boundaries. In: Nonlinear partial differential equations and their applications. Collège de France Seminar, vol. IV. H. Brézis, J.L. Lions (editors); Pitman, Boston, London1983; pp. 240-349. Zbl0547.35102
  11. [11] V.A. Solonnikov - V.E. Š, On a boundary value problem for the stationary system of Navier-Stokes equations (Russian), Trudy Mat. Inst. Steklov125 (1973), pp. 196-210. Engl. transl.: Proc. Steklov Inst. Math.125 (1973), pp. 186-199. Zbl0313.35063MR364910

NotesEmbed ?

top

You must be logged in to post comments.