Liquid crystals : relaxed energies, dipoles, singular lines and singular points

M. Giaquinta; G. Modica; J. Souček

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1990)

  • Volume: 17, Issue: 3, page 415-437
  • ISSN: 0391-173X

How to cite

top

Giaquinta, M., Modica, G., and Souček, J.. "Liquid crystals : relaxed energies, dipoles, singular lines and singular points." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 17.3 (1990): 415-437. <http://eudml.org/doc/84081>.

@article{Giaquinta1990,
author = {Giaquinta, M., Modica, G., Souček, J.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {geometric measure theory; integral representation; relaxation problem; energy functional of liquid crystals; representation result; Dirichlet problem; dipole; minimizer currents; line singularities; Cartesian currents with fractures},
language = {eng},
number = {3},
pages = {415-437},
publisher = {Scuola normale superiore},
title = {Liquid crystals : relaxed energies, dipoles, singular lines and singular points},
url = {http://eudml.org/doc/84081},
volume = {17},
year = {1990},
}

TY - JOUR
AU - Giaquinta, M.
AU - Modica, G.
AU - Souček, J.
TI - Liquid crystals : relaxed energies, dipoles, singular lines and singular points
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1990
PB - Scuola normale superiore
VL - 17
IS - 3
SP - 415
EP - 437
LA - eng
KW - geometric measure theory; integral representation; relaxation problem; energy functional of liquid crystals; representation result; Dirichlet problem; dipole; minimizer currents; line singularities; Cartesian currents with fractures
UR - http://eudml.org/doc/84081
ER -

References

top
  1. [1] F. Almgrem - W. Browder - E.H. Lieb, Co-area, liquid crystals, and minimal surfaces, In DDT - a selection of Papers, Springer-Verlag, 1987. Zbl0645.58015
  2. [2] F. Bethuel, A characterization of maps in H1(B3,S2) which can be approximated by smooth maps, preprint. Zbl0708.58004
  3. [3] F. Bethuel - S. Brezis - J.M. Coron, Relaxed energies for harmonic maps, preprint. 
  4. [4] S. Brezis, Sk-valued maps with singularities, In "Topics in Calculus of Variations" Ed. M. Giaquinta, Lecture Notes in Math. n. 1365, Springer-Verlag1989. Zbl0684.49015
  5. [5] S. Brezis - J.M. Coron - E.H. Lieb, Harmonic maps with defects, Comm. Math. Phys.107 (1986), p. 649-705. Zbl0608.58016
  6. [6] J. Ericksen - D. Kinderlehrer, Theory and applications of liquid crystals, IMA Series vol. 5, Springer-Verlag1987. Zbl0713.76006
  7. [7] H. Federer, Geometric measure theory. Springer-Verlag, New York, 1969. Zbl0176.00801
  8. [8] M. Giaquinta - G. Modica - J. Sou, Cartesian currents, weak diffeomorphisms and existence theorems in nonlinear elasticity, Archive for Rat. Mech. Anal.106 (1989) 97-159. Erratum and addendum, Archive for Rat. Mech. Anal.109 (1990), 385-392. Zbl0677.73014
  9. [9] M. Giaquinta - G. Modica - J. Sou, Cartesian currents and variational problems for mappings into spheres, Ann. Scuola Norm. Sup. Pisa16 (1989), 393-485. Zbl0713.49014
  10. [10] M. Giaquinta - G. Modica, J. Sou, The Dirichlet Energy of Mappings with values into the sphere, Manuscripta Math.65 (1989) 489-507. Zbl0678.49006
  11. [11] R. Hardt, Point and line singularities in liquid crystals, preprint. Zbl0752.49018
  12. [12] R. Hardt - D. Kinderlehrer - F.H. Lin, Existence and partial regularity of static liquid crystal configurations, Comm. Math. Phys.105 (1986), 547-570. Zbl0611.35077
  13. [13] R. Hardt - F.H. Lin, A remark on H1 mappings, Manuscripta Math.56 (1986) 1010. Zbl0618.58015
  14. [14] Yu. G. Reshetnyak, Space Mappings with Bounded Distorsion, Translation of Mathematics Monographs n. 73, A.M.S., Providence. Zbl0667.30018

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.