Stability of semilinear equations with boundary and pointwise noise
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1995)
- Volume: 22, Issue: 1, page 55-93
- ISSN: 0391-173X
Access Full Article
topHow to cite
topMaslowski, Bohdan. "Stability of semilinear equations with boundary and pointwise noise." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 22.1 (1995): 55-93. <http://eudml.org/doc/84200>.
@article{Maslowski1995,
author = {Maslowski, Bohdan},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {semilinear stochastic equations; boundary noise; pointwise noise; exponential stability; invariant measures},
language = {eng},
number = {1},
pages = {55-93},
publisher = {Scuola normale superiore},
title = {Stability of semilinear equations with boundary and pointwise noise},
url = {http://eudml.org/doc/84200},
volume = {22},
year = {1995},
}
TY - JOUR
AU - Maslowski, Bohdan
TI - Stability of semilinear equations with boundary and pointwise noise
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1995
PB - Scuola normale superiore
VL - 22
IS - 1
SP - 55
EP - 93
LA - eng
KW - semilinear stochastic equations; boundary noise; pointwise noise; exponential stability; invariant measures
UR - http://eudml.org/doc/84200
ER -
References
top- [1] H. Amann, On abstract parabolic fundamental solutions. J. Math. Soc. Japan39 (1987), 93-116. Zbl0616.47032MR867989
- [2] A.V. Balakrishnan, Applied Functional Analysis. Springer-Verlag, New York1976. Zbl0333.93051MR470699
- [3] L. Arnold - R.F. Curtain - P. Kotelenez, Nonlinear stochastic evolution equations in Hilbert space. Report no. 17, Forschungsschwerpunkt Dynamische Systeme, Universität Bremen (1980).
- [4] R. Arima, On general boundary value problem for parabolic equations. J. Math. Kyoto Univ.4 (1964), 207-243. Zbl0143.13902MR197997
- [5] S. Chen - R. Triggiani, Proof of extensions of two conjectures on structural damping for elastic systems. Pacific J. Math.136 (1989), 15-55. Zbl0633.47025MR971932
- [6] S. Chen - R. Triggiani, Characterizations of domains of fractional powers of certain operators arising in elastic systems. J. Differential Equations88 (1990), 279-293. Zbl0717.34066MR1081250
- [7] R. Datko, Extending a theorem of A.M. Liapunov to Hilbert space. J. Math. Analysis Appl.32 (1970), 610-616. Zbl0211.16802MR268717
- [8] G. Da Prato - J. Zabczyk, Stochastic Equations in Infinite Dimensions. Cambridge Univ. Press, Cambridge (1992). Zbl0761.60052MR1207136
- [9] G. Da Prato - J. Zabczyk, Evolution equations with white-noise boundary conditions. Stochastics Stochastics Rep.42 (1993), 167-182. Zbl0814.60055MR1291187
- [10] G. Da Prato - D.G. Atarek - J. Zabczyk, Invariant measures for semilinear stochastic equations. Stochastic Anal. Appl.10 (1992), 387-408. Zbl0758.60057MR1178482
- [11] T.E. Duncan - B. Maslowski - B. Pasik-Duncan, Adaptive boundary and point control of linear stochastic distributed parameter systems. SIAM J. on Control and Optim.32 (1994), 648-672. Zbl0802.93035MR1269987
- [12] D.E. Edmunds - H. Triebel, Entropy numbers and approximation numbers in function spaces. Proc. London Math. Soc.58 (1989), 137-152. Zbl0629.46034MR969551
- [13] F. Flandoli, Direct solution of a Riccati equation arising in a stochatic control problem with control and observations on the boundary. Appl. Math. Optim.14 (1986), 107-129. Zbl0606.93070MR863335
- [14] F. Flandoli, Dirichlet boundary value problem for stochastic parabolic equations: compatibility relations and regularity of solutions. Stochastics Stochastics Rep.29 (1990), 331-357. Zbl0696.60057MR1042066
- [15] F. Flandoli, On the semigroup approach to stochastic evolution equations. Stochastic Anal. Appl.10 (1992), 181-203. Zbl0762.60046MR1154534
- [16] I.C. Gokhberg - M.G. Krein, Introduction to the Theory of Linear Non-selfadjoint Operators. Nauka, Moscow (1965), Russian (English translation AMS, Providence, 1969). Zbl0181.13504
- [17] A. Ichikawa, Stability of semilinear stochastic evolution equations. J. Math. Anal. Appl.90 (1982), 12-44. Zbl0497.93055MR680861
- [18] A. Ichikawa, Semilinear stochastic evolution equations: boundedness, stability and invariant measures. Stochastics12 (1984), 1-39. Zbl0538.60068MR738933
- [19] A. Ichikawa, Equivalence of Lp stability and exponential stability for a class of nonlinear semigroups. Nonlinear Analysis8 (1984), 805-815. Zbl0547.47041MR750052
- [20] A. Ichikawa, A semigroup model for parabolic equations with boundary and pointwise noise. Stochastic Space-Time Models and Limit Theorems, D. Reidel Publishing Company (1985), 81-94. Zbl0593.60066
- [21] A. Ichikawa, Stability of parabolic equations with boundary and pointwise noise. In "Stochastic Differential Systems" (Proceedings), Lecture Notes in Control and Information Sciences69, Springer-Verlag, Berlin1985, 55-66. Zbl0572.93075MR798307
- [22] I. Lasiecka - R. Triggiani, Feedback semigroups and cosine operators for boundary feedback parabolic and hyperbolic equations. J. Differential Eq.'s47 (1983), 246-272. MR688105
- [23] I. Lasiecka, Unified theory of abstract parabolic boundary value problems: A semigroup approach. Appl. Math. Optim.6 (1980), 281-333. Zbl0448.47019MR587501
- [24] I. Lasiecka - R. Triggiani, Numerical approximations of algebraic Riccati equations modelled by analytic semigroups and applications. Math. Computation57 (1991), 639-662 and S 13-S37. Zbl0735.65043MR1094953
- [25] J.L. Lions - E. Magenes, Nonhomogeneous Boundary Value Problems and Applications I. Springer-Verlag, Berlin (1972). Zbl0223.35039
- [26] R. Manthey - B. Maslowski, Qualitative behavior of solutions of stochastic reaction-diffusion equations. Stochastic Processes Appl.37 (1992), 256-289. Zbl0761.60055MR1191151
- [27] X. Mao - L. Marcus, Wave equation with stochastic boundary values. J. Math. Anal. Appl.177 (1993), 315-341. Zbl0784.60061MR1231485
- [28] B. Maslowski, Uniqueness and stability of invariant measures for stochastic differential equations in Hilbert spaces. Stochastics Stochastics Rep.28 (1989), 85-114. Zbl0683.60037MR1018545
- [29] J. Seidler, Da Prato-Zabczyk's maximal inequality revisited I. Mathematica Bohemica118 (1993), 67-106. Zbl0785.35115MR1213834
- [30] R.B. Sowers, New asymptotic results for stochastic partial differential equations. Ph.D. Dissertation, University of Maryland.
- [31] R.B. Sowers, Multidimensional reaction-diffusion equations with white noise boundary perturbations. Annals of Probability, to appear. Zbl0834.60067MR1331216
- [32] I Vrkoč, A dynamical system in a Hilbert space with a weakly attractive nonstationary point. Mathematica Bohemica118 (1993), 401-423. Zbl0794.34054MR1251884
- [33] J. Zabczyk, On decomposition of generators. SIAM J. Control Optimiz.16 (1978), 523-534. Zbl0393.93023MR512915
Citations in EuDML Documents
top- Elisa Alòs, Stefano Bonaccorsi, Stochastic partial differential equations with Dirichlet white-noise boundary conditions
- Arnaud Debussche, Marco Fuhrman, Gianmario Tessitore, Optimal control of a stochastic heat equation with boundary-noise and boundary-control
- Bohdan Maslowski, Jan Seidler, Invariant measures for nonlinear SPDE's: uniqueness and stability
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.