Stability of semilinear equations with boundary and pointwise noise

Bohdan Maslowski

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1995)

  • Volume: 22, Issue: 1, page 55-93
  • ISSN: 0391-173X

How to cite

top

Maslowski, Bohdan. "Stability of semilinear equations with boundary and pointwise noise." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 22.1 (1995): 55-93. <http://eudml.org/doc/84200>.

@article{Maslowski1995,
author = {Maslowski, Bohdan},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {semilinear stochastic equations; boundary noise; pointwise noise; exponential stability; invariant measures},
language = {eng},
number = {1},
pages = {55-93},
publisher = {Scuola normale superiore},
title = {Stability of semilinear equations with boundary and pointwise noise},
url = {http://eudml.org/doc/84200},
volume = {22},
year = {1995},
}

TY - JOUR
AU - Maslowski, Bohdan
TI - Stability of semilinear equations with boundary and pointwise noise
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1995
PB - Scuola normale superiore
VL - 22
IS - 1
SP - 55
EP - 93
LA - eng
KW - semilinear stochastic equations; boundary noise; pointwise noise; exponential stability; invariant measures
UR - http://eudml.org/doc/84200
ER -

References

top
  1. [1] H. Amann, On abstract parabolic fundamental solutions. J. Math. Soc. Japan39 (1987), 93-116. Zbl0616.47032MR867989
  2. [2] A.V. Balakrishnan, Applied Functional Analysis. Springer-Verlag, New York1976. Zbl0333.93051MR470699
  3. [3] L. Arnold - R.F. Curtain - P. Kotelenez, Nonlinear stochastic evolution equations in Hilbert space. Report no. 17, Forschungsschwerpunkt Dynamische Systeme, Universität Bremen (1980). 
  4. [4] R. Arima, On general boundary value problem for parabolic equations. J. Math. Kyoto Univ.4 (1964), 207-243. Zbl0143.13902MR197997
  5. [5] S. Chen - R. Triggiani, Proof of extensions of two conjectures on structural damping for elastic systems. Pacific J. Math.136 (1989), 15-55. Zbl0633.47025MR971932
  6. [6] S. Chen - R. Triggiani, Characterizations of domains of fractional powers of certain operators arising in elastic systems. J. Differential Equations88 (1990), 279-293. Zbl0717.34066MR1081250
  7. [7] R. Datko, Extending a theorem of A.M. Liapunov to Hilbert space. J. Math. Analysis Appl.32 (1970), 610-616. Zbl0211.16802MR268717
  8. [8] G. Da Prato - J. Zabczyk, Stochastic Equations in Infinite Dimensions. Cambridge Univ. Press, Cambridge (1992). Zbl0761.60052MR1207136
  9. [9] G. Da Prato - J. Zabczyk, Evolution equations with white-noise boundary conditions. Stochastics Stochastics Rep.42 (1993), 167-182. Zbl0814.60055MR1291187
  10. [10] G. Da Prato - D.G. Atarek - J. Zabczyk, Invariant measures for semilinear stochastic equations. Stochastic Anal. Appl.10 (1992), 387-408. Zbl0758.60057MR1178482
  11. [11] T.E. Duncan - B. Maslowski - B. Pasik-Duncan, Adaptive boundary and point control of linear stochastic distributed parameter systems. SIAM J. on Control and Optim.32 (1994), 648-672. Zbl0802.93035MR1269987
  12. [12] D.E. Edmunds - H. Triebel, Entropy numbers and approximation numbers in function spaces. Proc. London Math. Soc.58 (1989), 137-152. Zbl0629.46034MR969551
  13. [13] F. Flandoli, Direct solution of a Riccati equation arising in a stochatic control problem with control and observations on the boundary. Appl. Math. Optim.14 (1986), 107-129. Zbl0606.93070MR863335
  14. [14] F. Flandoli, Dirichlet boundary value problem for stochastic parabolic equations: compatibility relations and regularity of solutions. Stochastics Stochastics Rep.29 (1990), 331-357. Zbl0696.60057MR1042066
  15. [15] F. Flandoli, On the semigroup approach to stochastic evolution equations. Stochastic Anal. Appl.10 (1992), 181-203. Zbl0762.60046MR1154534
  16. [16] I.C. Gokhberg - M.G. Krein, Introduction to the Theory of Linear Non-selfadjoint Operators. Nauka, Moscow (1965), Russian (English translation AMS, Providence, 1969). Zbl0181.13504
  17. [17] A. Ichikawa, Stability of semilinear stochastic evolution equations. J. Math. Anal. Appl.90 (1982), 12-44. Zbl0497.93055MR680861
  18. [18] A. Ichikawa, Semilinear stochastic evolution equations: boundedness, stability and invariant measures. Stochastics12 (1984), 1-39. Zbl0538.60068MR738933
  19. [19] A. Ichikawa, Equivalence of Lp stability and exponential stability for a class of nonlinear semigroups. Nonlinear Analysis8 (1984), 805-815. Zbl0547.47041MR750052
  20. [20] A. Ichikawa, A semigroup model for parabolic equations with boundary and pointwise noise. Stochastic Space-Time Models and Limit Theorems, D. Reidel Publishing Company (1985), 81-94. Zbl0593.60066
  21. [21] A. Ichikawa, Stability of parabolic equations with boundary and pointwise noise. In "Stochastic Differential Systems" (Proceedings), Lecture Notes in Control and Information Sciences69, Springer-Verlag, Berlin1985, 55-66. Zbl0572.93075MR798307
  22. [22] I. Lasiecka - R. Triggiani, Feedback semigroups and cosine operators for boundary feedback parabolic and hyperbolic equations. J. Differential Eq.'s47 (1983), 246-272. MR688105
  23. [23] I. Lasiecka, Unified theory of abstract parabolic boundary value problems: A semigroup approach. Appl. Math. Optim.6 (1980), 281-333. Zbl0448.47019MR587501
  24. [24] I. Lasiecka - R. Triggiani, Numerical approximations of algebraic Riccati equations modelled by analytic semigroups and applications. Math. Computation57 (1991), 639-662 and S 13-S37. Zbl0735.65043MR1094953
  25. [25] J.L. Lions - E. Magenes, Nonhomogeneous Boundary Value Problems and Applications I. Springer-Verlag, Berlin (1972). Zbl0223.35039
  26. [26] R. Manthey - B. Maslowski, Qualitative behavior of solutions of stochastic reaction-diffusion equations. Stochastic Processes Appl.37 (1992), 256-289. Zbl0761.60055MR1191151
  27. [27] X. Mao - L. Marcus, Wave equation with stochastic boundary values. J. Math. Anal. Appl.177 (1993), 315-341. Zbl0784.60061MR1231485
  28. [28] B. Maslowski, Uniqueness and stability of invariant measures for stochastic differential equations in Hilbert spaces. Stochastics Stochastics Rep.28 (1989), 85-114. Zbl0683.60037MR1018545
  29. [29] J. Seidler, Da Prato-Zabczyk's maximal inequality revisited I. Mathematica Bohemica118 (1993), 67-106. Zbl0785.35115MR1213834
  30. [30] R.B. Sowers, New asymptotic results for stochastic partial differential equations. Ph.D. Dissertation, University of Maryland. 
  31. [31] R.B. Sowers, Multidimensional reaction-diffusion equations with white noise boundary perturbations. Annals of Probability, to appear. Zbl0834.60067MR1331216
  32. [32] I Vrkoč, A dynamical system in a Hilbert space with a weakly attractive nonstationary point. Mathematica Bohemica118 (1993), 401-423. Zbl0794.34054MR1251884
  33. [33] J. Zabczyk, On decomposition of generators. SIAM J. Control Optimiz.16 (1978), 523-534. Zbl0393.93023MR512915

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.