Maximum principles and minimal surfaces
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)
- Volume: 25, Issue: 3-4, page 667-681
- ISSN: 0391-173X
Access Full Article
topHow to cite
topMiranda, Mario. "Maximum principles and minimal surfaces." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 25.3-4 (1997): 667-681. <http://eudml.org/doc/84309>.
@article{Miranda1997,
author = {Miranda, Mario},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {generalized solutions; minimal surface equation; singular solutions; Plateau problem; Dirichlet and Bernstein problems; removable singularities},
language = {eng},
number = {3-4},
pages = {667-681},
publisher = {Scuola normale superiore},
title = {Maximum principles and minimal surfaces},
url = {http://eudml.org/doc/84309},
volume = {25},
year = {1997},
}
TY - JOUR
AU - Miranda, Mario
TI - Maximum principles and minimal surfaces
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1997
PB - Scuola normale superiore
VL - 25
IS - 3-4
SP - 667
EP - 681
LA - eng
KW - generalized solutions; minimal surface equation; singular solutions; Plateau problem; Dirichlet and Bernstein problems; removable singularities
UR - http://eudml.org/doc/84309
ER -
References
top- [1] F.J. Almgren, JR., Some interior regularity theoremsfor minimal surfaces and an extension of Bernstein's theorem, Ann. of Math.85 (1996), 277-292. Zbl0146.11905
- [2] D. Benarros - M. Miranda, Lawson cones and the Bernstein theorem, Advances in Geom. Anal. and Cont. Mech., pages 44-56, 1995. Ed. P. Concus and K. Lancaster for Int. Press. Zbl0860.53003MR1356726
- [3] S. Bernstein, Sur les surfaces définies au moyen de leur courbure moyenne ou totale, Ann. Sci. Ec. Norm. Sup.27 (1910), 233-256. Zbl41.0692.05MR1509123JFM41.0692.05
- [4] L. Bers, Isolated singularities of minimal surfaces, Ann. of Math.53 (1951), 364-386. Zbl0043.15901MR43335
- [5] E. Bombieri - E. De Giorgi - E. Giusti, Minimal cones and the Bernstein problem, Invent. Math.7 (1969), 243-268. Zbl0183.25901MR250205
- [6] E. Bombieri - E. De Giorgi - M. Miranda, Una maggiorazione a priori relativa alle ipersuperficie minimali non parametriche, Arch. Rat. Mech. Anal.32 (1969), 255-267. Zbl0184.32803MR248647
- [7] E. Bombieri - E. Giusti, Harnack's inequality for elliptic differential equations on minimal surfaces, Invent. Math.15 (1972), 24-46. Zbl0227.35021MR308945
- [8] E. De Giorgi, Su una teoria generale della misura (r - 1)-dimensionale in uno spazio euclideo ad r dimensioni, Ann. Mat. Pura Appl.36 (1954), 191-213. Zbl0055.28504MR62214
- [9] E. De Giorgi, Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Scie. Torino Cl. Sci. Fis. Mat. Natur.3 (1957), 25-43. Zbl0084.31901MR93649
- [10] E. De Giorgi, Una estensione del teorema di Bernstein, Ann. Sc. Norm. Sup. Pisa19 (1965), 79-85. Zbl0168.09802MR178385
- [11] E. De Giorgi - F. Colombini - L.C. Piccinini, "Frontiere Orientate di Misura Minima e Questioni Collegate", Pubbl. Cl. Sci. Scuola Norm. Sup. Pisa Cl. Sci., 1972. Zbl0296.49031MR493669
- [12] E. De Giorgi - G. Stampacchia, Sulle singolarità eliminabili delle ipersuperficie minimali, Rend. Acc. Lincei38 (1965), 352-357. Zbl0135.40003MR187158
- [13] R. Finn, Isolated singularities of solutions of non-linear partial differential equations, Transact. Amer. Math. Soc.75 (1953), 385-404. Zbl0053.39205MR58826
- [14] R. Finn, Remarks relevant to minimal surfaces and to surfaces of prescribed mean curvature, J. d'Analyse Mathém.14 (1965), 139-160. Zbl0163.34604MR188909
- [15] W.H. Fleming, On the oriented Plateau problem, Rend. Circ. Mat. Palermo9 (1962), 69-89. Zbl0107.31304MR157263
- [16] A. Haar, Über das Plateausche Problem, Math. Ann.97 (1927), 124-158. Zbl52.0710.02MR1512358JFM52.0710.02
- [17] D. Hilbert, Über das Dirichlet'sche Prinzip, Uber. Deutsch. Math. Verein.8 (1900), 184-188. JFM31.0418.01
- [18] D. Hilbert, Über das Dirichlet'sche Prinzip, Math. Ann.59 (1904), 161-186. MR1511266JFM35.0436.02
- [19] H. Jenkins - J. Serrin, The Dirichlet problem for the minimal surface equation in higher dimensions, J. Reine Angew. Math.229 (1968), 170-187. Zbl0159.40204MR222467
- [20] H. Lebesgue, Sur le problème de Dirichlet, Rend. Circ. Mat. Palermo24 (1907), 371-402. JFM38.0392.01
- [21] U. Massari - M. Miranda, A remark on minimal cones, Boll. Un. Mat. Ital.2-A Serie IV (1983), 123-125. Zbl0518.49030MR694754
- [22] M. Miranda, Un principio di massimo forte per le frontiere minimali e una sua applicazione alla soluzione del problema al contorno per l'equazione delle superfici di area minima, Rend. Sem. Mat. Padova45 (1951), 355-366. Zbl0266.49034MR303390
- [23] M. Miranda, Existence and regularity of hypersurfaces of Rn with prescribed mean curvature, AMS, Proc. of Symp. in Pure Math.23 (1973), 1-9. Zbl0274.35022MR336530
- [24] M. Miranda, Grafici minimi completi, Ann. Univ. Ferrara23 (1977), 269-272. Zbl0367.53001MR467551
- [25] M. Miranda, Sulle singolarità eliminabili delle soluzioni dell'equazione delle superfici minime, Ann. Scuola Norm. Sup. Pisa Cl. Sci.4 Serie IV (1977), 129-132. Zbl0344.35037MR433309
- [26] M. Miranda, Superfici minime illimitate, Ann. Scuola Norm. Sup. Pisa Cl. Sci.4 (1977), 313-322. Zbl0352.49020MR500423
- [27] M.P. Moschen, Principio di massimo forte per le frontiere di misura minima, Ann. Univ. Ferrara Sez.VII, Sc. Mat.23 (1977), 165-168. Zbl0384.49030MR482508
- [28] J. Moser, On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math.14 (1961), 577-591. Zbl0111.09302MR159138
- [29] J. Nash, Continuity of the solutions ofparabolic and elliptic equations, Amer. J. Math.80 (1958), 931-954. Zbl0096.06902MR100158
- [30] J.C.C. Nitsche, Elementary proof of Bernstein's theorem on minimal surfaces, Ann. of Math.66 (1957), 543-544. Zbl0079.37702MR90833
- [31] J.C.C. Nitsche, On new results in the theory of minimal surfaces, Bull. Amer. Math. Soc.71 (1965), 195-270. Zbl0135.21701MR173993
- [32] T. Rado, The problem of the least area and the problem of Plateau, Math. Z.32 (1930), 763-796. Zbl56.0436.01MR1545197JFM56.0436.01
- [33] L. Simon, Entire solutions of the minimal surface equation, J. Diff. Geom.30 (1989), 643-688. Zbl0687.53009MR1021370
- [34] J. Simons, Minimal varieties in Riemannian manifolds, Ann. of Math.88 (1968), 62-105. Zbl0181.49702MR233295
- [35] J. Von Neumann, Über einen Hilfssatz der Variationsrechnung, Abh. Math. Sem. Hamburg Univ.8 (1931), 28-31. Zbl56.0440.04JFM56.0440.04
Citations in EuDML Documents
top- Mario Miranda, Gradient estimates and Harnack inequalities for solutions to the minimal surface equation
- Krzysztof Chełmiński, Agnieszka Kałamajska, New convexity conditions in the calculus of variations and compensated compactness theory
- Krzysztof Chełmiński, Agnieszka Kałamajska, New convexity conditions in the calculus of variations and compensated compactness theory
- Umberto Massari, Ricordo di Mario Miranda
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.