Distance between components in optimal design problems with perimeter penalization
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1999)
- Volume: 28, Issue: 4, page 641-649
- ISSN: 0391-173X
Access Full Article
topHow to cite
topReferences
top- [1] L. Ambrosio - G. Buttazzo, An optimal design problem with perimeter penalization, Calc. Var. Partial Differential Equations1 (1993), 55-69. Zbl0794.49040MR1261717
- [2] A. CHERKAEV - R. KOHN (eds.), "Topics in the Mathematical Modelling of Composite Materials", Progress in Nonlinear Differential Equations and Their Applications, 31, Birkhäuser, Boston, 1997. Zbl0870.00018MR1493036
- [3] L.C. Evans - R.F. Gariepy, "Measure Theory and Fine Properties of Functions", CRC Press, Boca Raton, 1992. Zbl0804.28001MR1158660
- [4] M. Giaquinta, "Introduction to Regularity Theory for Nonlinear Elliptic Systems", Birkhäuser, Basel, 1993. Zbl0786.35001MR1239172
- [5] C.J. Larsen, A new proof of regularity for two-shaded image segmentations, Manuscripta Math.96 (1998), 247-262. Zbl0905.49018MR1624541
- [6] F.H. Lin, Variational problems with free interfaces, Calc. Var. Partial Differential Equations1 (1993), 149-168. Zbl0794.49038MR1261721
- [7] K. Lurie - A. Cherkaev, Effective characteristics of composite materials and the optimal design of structural elements, Adv. Mech.9 (1986), 3-81. MR885713
- [8] F. Murat - L. Tartar, Calcul des Variations et Homogénéisation, Les Méthodes de l'Homogénéisation Théorie et Applications en Physique, Coll. Dir. Etudes et Recherches EDF, Eyrolles (1985), 319-369. MR844873
- [9] W.P. Ziemer, "Weakly Differentiable Functions", Springer-Verlag, Berlin, 1989. Zbl0692.46022MR1014685