A variational approach to bifurcation into spectral gaps
Jacques Giacomoni; Louis Jeanjean
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1999)
- Volume: 28, Issue: 4, page 651-674
- ISSN: 0391-173X
Access Full Article
topHow to cite
topGiacomoni, Jacques, and Jeanjean, Louis. "A variational approach to bifurcation into spectral gaps." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 28.4 (1999): 651-674. <http://eudml.org/doc/84392>.
@article{Giacomoni1999,
author = {Giacomoni, Jacques, Jeanjean, Louis},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {spectral theory; nonlinear elliptic equation; variational theory},
language = {eng},
number = {4},
pages = {651-674},
publisher = {Scuola normale superiore},
title = {A variational approach to bifurcation into spectral gaps},
url = {http://eudml.org/doc/84392},
volume = {28},
year = {1999},
}
TY - JOUR
AU - Giacomoni, Jacques
AU - Jeanjean, Louis
TI - A variational approach to bifurcation into spectral gaps
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1999
PB - Scuola normale superiore
VL - 28
IS - 4
SP - 651
EP - 674
LA - eng
KW - spectral theory; nonlinear elliptic equation; variational theory
UR - http://eudml.org/doc/84392
ER -
References
top- [1] S. Alama - Y.Y. Li, Existence of solutions for semilinear elliptic equations with indefinite linear part, J. Differential Equations96 (1992), 89-115. Zbl0766.35009MR1153310
- [2] V. Benci - P.H. Rabinowitz, Critical point theorems for indefinite functions, Invent. Math.52 (1979), 241-273. Zbl0465.49006MR537061
- [3] H. Brezis - J.M. Coron - L. Nirenberg, Free vibrations for a nonlinear wave equation and a theorem of P. H. Rabinowitz, Comm. Pure Appl. Math.33 (1980), 667-689. Zbl0484.35057MR586417
- [4] H. Brezis - L. Nirenberg, Remarks on finding critical points, Comm. Pure Appl. Math.44 (1991), 939-963. Zbl0751.58006MR1127041
- [5] B. Buffoni, "Un problème variationnel fortement indéfini sans compacité", Ph. D. Thesis, EPFL, Lausanne, 1992.
- [6] B. Buffoni - L. Jeanjean, Bifurcation from the essential spectrum towards regular values, J. Reine Angew. Math.445 (1993), 1-29. Zbl0795.47041MR1244967
- [7] B. Buffoni - L. Jeanjean, Minimax characterisation of solutions for a semi-linear elliptic equation with lack of compactness, Ann. Inst. H. Poincaré Anal. Non Linéaire10 (1993), 377-404. Zbl0828.35013MR1246458
- [8] B. Buffoni - L. Jeanjean - C.A. Stuart, Existence of a nontrivial solution to a strongly indefinite semilinear equation, Proc. Amer. Math. Soc.119 (1993), 179-186. Zbl0789.35052MR1145940
- [9] V. Coti-Zelati - I. Ekeland - E. Séré, A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann.288 (1990), 133-160. Zbl0731.34050MR1070929
- [10] M.J. Esteban - E. Séré, Stationnary states of the nonlinear Dirac equation: a variational approach, Comm. Math. Phys.171 (1995), 323-350. Zbl0843.35114MR1344729
- [11] H.-P. Heinz, Bifurcation from the essential spectrum for nonlinear pertubations of Hill's equation, In "Differential Equations-Stability and Control " S. ELAYDI (ed.), Marcel Dekker, New York, 1990, pp. 219-226. Zbl0723.35008
- [12] H.-P. Heinz, Lacunary bifurcation for operator equations and nonlinear boundary value problems on RN, Proc. Roy. Soc. Edinburgh Sect. A118 (1991), 237-270. Zbl0765.47017MR1121666
- [13] H.-P. Heinz - C.A. Stuart, Solvability of nonlinear equations in spectral gaps of the linearisation, Nonlinear Anal.19 (1992), 145-165. Zbl0777.47033MR1174464
- [14] H.-P. Heinz - T. Küpper - C.A. Stuart, Existence and bifurcation of solutions for nonlinear pertubations of the periodic Schrödinger equation, J. Differential Equations100 (1992), 341-354. Zbl0767.35006MR1194814
- [15] H. Hofer - K. Wysocki, First order elliptic system and the existence of homoclinic orbits in Hamiltonian systems, Math. Ann.288 (1990), 483-503. Zbl0702.34039MR1079873
- [16] T. Küpper - C.A. Stuart, Bifurcation into gaps in the essential spectrum, J. Reine Angew. Math.409 (1990), 1-34. Zbl0697.47063MR1061517
- [17] R. Joosten, Bifurcation of homoclinic solutions for Hamiltonian systems, in preparation. Zbl1028.37034
- [18] L. Jeanjean, Solution in spectral gaps for a nonlinear equation of Schrödinger type, J. Differential Equations112 (1994), 53-80. Zbl0804.35033MR1287552
- [19] L. Jeanjean, "Approche minimax des solutions d'une équation semi-linéaire elliptique en l'absence de compacité", Ph. D. Thesis, EPFL, Lausanne, 1992.
- [20] L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer type problem set on RN, Proc. Roy. Soc. Edinburgh, to appear. Zbl0935.35044
- [21] L. Jeanjean, Local conditions insuring bifurcation from the continuous spectrum, Math. Z., to appear. Zbl0934.35047MR1727546
- [22] L. Jeanjean - J.F. Toland, Bounded Palais-Smale mountain-pass sequences, C. R. Acad. Sci. Paris Sér. I Math.327 (1998), 23-28. Zbl0996.47052MR1650239
- [23] W. Kryszewski - A. Szulkin, Generalized linking theorem with an application to a semilinear Schrödinger equation, Adv. Differential Equations3 (1998), 441-472. Zbl0947.35061MR1751952
- [24] M. Struwe, "Variational Methods", Springer, Second Edition, 1996. Zbl0864.49001MR1411681
- [25] C.A. Stuart, "Bifurcation into spectral gaps", Société Mathématique de Belgique, 1995. Zbl0864.47037MR1361485
- [26] C. Troestler, Bifurcation into spectral gaps for a noncompact semilinear Schrödinger equation with nonconvex potential, Preprint.
- [27] C. Troestler - M. Willem, Nontrivial solution of a semilinear Schrödinger equation, Comm. Partial Differential Equations21 (1996), 1431-1449. Zbl0864.35036MR1410836
- [28] M. Willem, "Minimax Theorems", Birkhaüser, Boston, 1996. Zbl0856.49001MR1400007
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.