A variational approach to bifurcation into spectral gaps

Jacques Giacomoni; Louis Jeanjean

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1999)

  • Volume: 28, Issue: 4, page 651-674
  • ISSN: 0391-173X

How to cite

top

Giacomoni, Jacques, and Jeanjean, Louis. "A variational approach to bifurcation into spectral gaps." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 28.4 (1999): 651-674. <http://eudml.org/doc/84392>.

@article{Giacomoni1999,
author = {Giacomoni, Jacques, Jeanjean, Louis},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {spectral theory; nonlinear elliptic equation; variational theory},
language = {eng},
number = {4},
pages = {651-674},
publisher = {Scuola normale superiore},
title = {A variational approach to bifurcation into spectral gaps},
url = {http://eudml.org/doc/84392},
volume = {28},
year = {1999},
}

TY - JOUR
AU - Giacomoni, Jacques
AU - Jeanjean, Louis
TI - A variational approach to bifurcation into spectral gaps
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1999
PB - Scuola normale superiore
VL - 28
IS - 4
SP - 651
EP - 674
LA - eng
KW - spectral theory; nonlinear elliptic equation; variational theory
UR - http://eudml.org/doc/84392
ER -

References

top
  1. [1] S. Alama - Y.Y. Li, Existence of solutions for semilinear elliptic equations with indefinite linear part, J. Differential Equations96 (1992), 89-115. Zbl0766.35009MR1153310
  2. [2] V. Benci - P.H. Rabinowitz, Critical point theorems for indefinite functions, Invent. Math.52 (1979), 241-273. Zbl0465.49006MR537061
  3. [3] H. Brezis - J.M. Coron - L. Nirenberg, Free vibrations for a nonlinear wave equation and a theorem of P. H. Rabinowitz, Comm. Pure Appl. Math.33 (1980), 667-689. Zbl0484.35057MR586417
  4. [4] H. Brezis - L. Nirenberg, Remarks on finding critical points, Comm. Pure Appl. Math.44 (1991), 939-963. Zbl0751.58006MR1127041
  5. [5] B. Buffoni, "Un problème variationnel fortement indéfini sans compacité", Ph. D. Thesis, EPFL, Lausanne, 1992. 
  6. [6] B. Buffoni - L. Jeanjean, Bifurcation from the essential spectrum towards regular values, J. Reine Angew. Math.445 (1993), 1-29. Zbl0795.47041MR1244967
  7. [7] B. Buffoni - L. Jeanjean, Minimax characterisation of solutions for a semi-linear elliptic equation with lack of compactness, Ann. Inst. H. Poincaré Anal. Non Linéaire10 (1993), 377-404. Zbl0828.35013MR1246458
  8. [8] B. Buffoni - L. Jeanjean - C.A. Stuart, Existence of a nontrivial solution to a strongly indefinite semilinear equation, Proc. Amer. Math. Soc.119 (1993), 179-186. Zbl0789.35052MR1145940
  9. [9] V. Coti-Zelati - I. Ekeland - E. Séré, A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann.288 (1990), 133-160. Zbl0731.34050MR1070929
  10. [10] M.J. Esteban - E. Séré, Stationnary states of the nonlinear Dirac equation: a variational approach, Comm. Math. Phys.171 (1995), 323-350. Zbl0843.35114MR1344729
  11. [11] H.-P. Heinz, Bifurcation from the essential spectrum for nonlinear pertubations of Hill's equation, In "Differential Equations-Stability and Control " S. ELAYDI (ed.), Marcel Dekker, New York, 1990, pp. 219-226. Zbl0723.35008
  12. [12] H.-P. Heinz, Lacunary bifurcation for operator equations and nonlinear boundary value problems on RN, Proc. Roy. Soc. Edinburgh Sect. A118 (1991), 237-270. Zbl0765.47017MR1121666
  13. [13] H.-P. Heinz - C.A. Stuart, Solvability of nonlinear equations in spectral gaps of the linearisation, Nonlinear Anal.19 (1992), 145-165. Zbl0777.47033MR1174464
  14. [14] H.-P. Heinz - T. Küpper - C.A. Stuart, Existence and bifurcation of solutions for nonlinear pertubations of the periodic Schrödinger equation, J. Differential Equations100 (1992), 341-354. Zbl0767.35006MR1194814
  15. [15] H. Hofer - K. Wysocki, First order elliptic system and the existence of homoclinic orbits in Hamiltonian systems, Math. Ann.288 (1990), 483-503. Zbl0702.34039MR1079873
  16. [16] T. Küpper - C.A. Stuart, Bifurcation into gaps in the essential spectrum, J. Reine Angew. Math.409 (1990), 1-34. Zbl0697.47063MR1061517
  17. [17] R. Joosten, Bifurcation of homoclinic solutions for Hamiltonian systems, in preparation. Zbl1028.37034
  18. [18] L. Jeanjean, Solution in spectral gaps for a nonlinear equation of Schrödinger type, J. Differential Equations112 (1994), 53-80. Zbl0804.35033MR1287552
  19. [19] L. Jeanjean, "Approche minimax des solutions d'une équation semi-linéaire elliptique en l'absence de compacité", Ph. D. Thesis, EPFL, Lausanne, 1992. 
  20. [20] L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer type problem set on RN, Proc. Roy. Soc. Edinburgh, to appear. Zbl0935.35044
  21. [21] L. Jeanjean, Local conditions insuring bifurcation from the continuous spectrum, Math. Z., to appear. Zbl0934.35047MR1727546
  22. [22] L. Jeanjean - J.F. Toland, Bounded Palais-Smale mountain-pass sequences, C. R. Acad. Sci. Paris Sér. I Math.327 (1998), 23-28. Zbl0996.47052MR1650239
  23. [23] W. Kryszewski - A. Szulkin, Generalized linking theorem with an application to a semilinear Schrödinger equation, Adv. Differential Equations3 (1998), 441-472. Zbl0947.35061MR1751952
  24. [24] M. Struwe, "Variational Methods", Springer, Second Edition, 1996. Zbl0864.49001MR1411681
  25. [25] C.A. Stuart, "Bifurcation into spectral gaps", Société Mathématique de Belgique, 1995. Zbl0864.47037MR1361485
  26. [26] C. Troestler, Bifurcation into spectral gaps for a noncompact semilinear Schrödinger equation with nonconvex potential, Preprint. 
  27. [27] C. Troestler - M. Willem, Nontrivial solution of a semilinear Schrödinger equation, Comm. Partial Differential Equations21 (1996), 1431-1449. Zbl0864.35036MR1410836
  28. [28] M. Willem, "Minimax Theorems", Birkhaüser, Boston, 1996. Zbl0856.49001MR1400007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.