Complexification of proper hamiltonian G -spaces

Bernd Stratmann

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2001)

  • Volume: 30, Issue: 3-4, page 515-534
  • ISSN: 0391-173X

How to cite

top

Stratmann, Bernd. "Complexification of proper hamiltonian $G$-spaces." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 30.3-4 (2001): 515-534. <http://eudml.org/doc/84451>.

@article{Stratmann2001,
author = {Stratmann, Bernd},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {3-4},
pages = {515-534},
publisher = {Scuola normale superiore},
title = {Complexification of proper hamiltonian $G$-spaces},
url = {http://eudml.org/doc/84451},
volume = {30},
year = {2001},
}

TY - JOUR
AU - Stratmann, Bernd
TI - Complexification of proper hamiltonian $G$-spaces
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2001
PB - Scuola normale superiore
VL - 30
IS - 3-4
SP - 515
EP - 534
LA - eng
UR - http://eudml.org/doc/84451
ER -

References

top
  1. [Ab74] H. Abels, Parallelizibility of proper actions, global K-slices and maximal compact subgroups, Math. Ann.212 (1974), 1-19. Zbl0276.57019MR375264
  2. [AHH98] M. Ammon - P. Heinzner - A.T. Huckleberry, Kähler structures on symplectic reductions, (in preparation). 
  3. [Amm97] M. Ammon, "Komplexe Strukturen auf Quotienten von Kempf-Ness-Mengen ", Dissertation, Ruhr-Universität Bochum, February 1997. Zbl0879.53050
  4. [Gra58] H. Grauert, On Levi's problem and the imbedding of real-analytic manifolds, Ann. of Math.68 (1958), 460-473. Zbl0108.07804MR98847
  5. [GuSt84] V. Guillemin - S. Sternberg, "Symplectic techniques in Physics", Cambridge University Press, CambridgeLondon, 1984. Zbl0576.58012MR770935
  6. [He91] P. Heinzner, Geometric invariant theory on Stein spaces, Math. Ann.289 (1991), 631-662. Zbl0728.32010MR1103041
  7. [He93] P. Heinzner, Equivariant holomorphic extensions of real analytic manifolds, Bull. Soc. Math. France121(1993), 445-463. Zbl0794.32022MR1242639
  8. [HH] P. Heinzner - A.T. Huckleberry, Complex geometry of Hamiltonian actions, (in preparation). 
  9. [HH00] P. Heinzner - A.T. Huckleberry, Kählerian structures on symplectic reductions, Complex Analysis and Algebraic Geometry, eds. Th. Peternell, F.-O. Schreyer., 225-253, 2000. Zbl0999.32011MR1760879
  10. [HHK96] P. Heinzner - A. Huckleberry - F. Kutzschebauch, A real analytic version of Abels' theorem and complexifications of proper Lie group actions (Trento 1993), Complex Analysis and Geometry, Lecture Notes in Pure and Applied Mathematics, Dekker, New YorkBaselHong Kong, 229-273, 1996. Zbl0861.32011MR1365977
  11. [HHL94] P. Heinzner - A.T. Huckleberry - F. Loose, Kähler extensions of the symplectic reduction, J. reine angew. Math.455 (1994), 123-140. Zbl0803.53042MR1293876
  12. [Hir76] M.W. Hirsch, "Differential Topology", Graduate Texts in Mathematics. Springer-Verlag, New YorkHeidelbergBerlin, 1976. Zbl0356.57001MR448362
  13. [Ho65] G. Hochschild, "The structure of Lie groups", Holden-Day, San FranciscoLondonAmsterdam, 1965. Zbl0131.02702MR207883
  14. [Il93] S. Illman, Every proper smooth action of a Lie group is equivalent to a real analytic action, Preprint MPI/93-3 Bonn, 1993. 
  15. [Kut94] F. Kutzschebauch, "Eigentliche Wirkungen von Liegruppen auf reell-analytischen Mannigfaltigkeiten", Dissertation, Ruhr-Universität Bochum, 1994. Zbl0840.22017
  16. [Ku96] F. Kutzschebauch, On the uniqueness of the analyticity of a proper G-action, Manuscripte Math.90(1) (1996), 17-22. Zbl0858.58001MR1387751
  17. [MDSa95] D. McDuff - D. Salamon, "Introduction to Symplectic Topology ", Clarendon PressOxford, Oxford, 1995. Zbl0844.58029MR1373431
  18. [Pa61] R.S. Palais, On the existence of slices for actions of non-compact Lie groups, Ann. of Math.73(2) (1961), 295-323. Zbl0103.01802MR126506
  19. [OrigDiss] B. Stratmann, "Complexification of proper Hamiltonian G-spaces", Dissertation, Ruhr-Universität Bochum, 1998. Zbl0915.32003
  20. [Wi93] J. Winkelmann, Invariant hyperbolic Stein domains, Manu. Math.79 (1993), 329-334. Zbl0791.32014MR1223026

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.