Complexification of proper hamiltonian -spaces
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2001)
- Volume: 30, Issue: 3-4, page 515-534
- ISSN: 0391-173X
Access Full Article
topHow to cite
topReferences
top- [Ab74] H. Abels, Parallelizibility of proper actions, global K-slices and maximal compact subgroups, Math. Ann.212 (1974), 1-19. Zbl0276.57019MR375264
- [AHH98] M. Ammon - P. Heinzner - A.T. Huckleberry, Kähler structures on symplectic reductions, (in preparation).
- [Amm97] M. Ammon, "Komplexe Strukturen auf Quotienten von Kempf-Ness-Mengen ", Dissertation, Ruhr-Universität Bochum, February 1997. Zbl0879.53050
- [Gra58] H. Grauert, On Levi's problem and the imbedding of real-analytic manifolds, Ann. of Math.68 (1958), 460-473. Zbl0108.07804MR98847
- [GuSt84] V. Guillemin - S. Sternberg, "Symplectic techniques in Physics", Cambridge University Press, CambridgeLondon, 1984. Zbl0576.58012MR770935
- [He91] P. Heinzner, Geometric invariant theory on Stein spaces, Math. Ann.289 (1991), 631-662. Zbl0728.32010MR1103041
- [He93] P. Heinzner, Equivariant holomorphic extensions of real analytic manifolds, Bull. Soc. Math. France121(1993), 445-463. Zbl0794.32022MR1242639
- [HH] P. Heinzner - A.T. Huckleberry, Complex geometry of Hamiltonian actions, (in preparation).
- [HH00] P. Heinzner - A.T. Huckleberry, Kählerian structures on symplectic reductions, Complex Analysis and Algebraic Geometry, eds. Th. Peternell, F.-O. Schreyer., 225-253, 2000. Zbl0999.32011MR1760879
- [HHK96] P. Heinzner - A. Huckleberry - F. Kutzschebauch, A real analytic version of Abels' theorem and complexifications of proper Lie group actions (Trento 1993), Complex Analysis and Geometry, Lecture Notes in Pure and Applied Mathematics, Dekker, New YorkBaselHong Kong, 229-273, 1996. Zbl0861.32011MR1365977
- [HHL94] P. Heinzner - A.T. Huckleberry - F. Loose, Kähler extensions of the symplectic reduction, J. reine angew. Math.455 (1994), 123-140. Zbl0803.53042MR1293876
- [Hir76] M.W. Hirsch, "Differential Topology", Graduate Texts in Mathematics. Springer-Verlag, New YorkHeidelbergBerlin, 1976. Zbl0356.57001MR448362
- [Ho65] G. Hochschild, "The structure of Lie groups", Holden-Day, San FranciscoLondonAmsterdam, 1965. Zbl0131.02702MR207883
- [Il93] S. Illman, Every proper smooth action of a Lie group is equivalent to a real analytic action, Preprint MPI/93-3 Bonn, 1993.
- [Kut94] F. Kutzschebauch, "Eigentliche Wirkungen von Liegruppen auf reell-analytischen Mannigfaltigkeiten", Dissertation, Ruhr-Universität Bochum, 1994. Zbl0840.22017
- [Ku96] F. Kutzschebauch, On the uniqueness of the analyticity of a proper G-action, Manuscripte Math.90(1) (1996), 17-22. Zbl0858.58001MR1387751
- [MDSa95] D. McDuff - D. Salamon, "Introduction to Symplectic Topology ", Clarendon PressOxford, Oxford, 1995. Zbl0844.58029MR1373431
- [Pa61] R.S. Palais, On the existence of slices for actions of non-compact Lie groups, Ann. of Math.73(2) (1961), 295-323. Zbl0103.01802MR126506
- [OrigDiss] B. Stratmann, "Complexification of proper Hamiltonian G-spaces", Dissertation, Ruhr-Universität Bochum, 1998. Zbl0915.32003
- [Wi93] J. Winkelmann, Invariant hyperbolic Stein domains, Manu. Math.79 (1993), 329-334. Zbl0791.32014MR1223026