Fonctions et feuilletages Levi-Flat. Étude locale

Dominique Cerveau[1]; Paulo R. Sad[2]

  • [1] Institut de Recherches Mathématiques de Rennes Université de Rennes 1 Campus de Beaulieu 35042 Rennes, France
  • [2] Instituto de Matemática Pura e Aplicada Estrada D. Castorina 110, Jardim Botânico 22320-010 Rio de Janeiro, Brasil

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2004)

  • Volume: 3, Issue: 2, page 427-445
  • ISSN: 0391-173X

Abstract

top
We define the notion of CR equivalence for Levi-flat foliations and compare in a local setting these foliations to their linear parts. We study also the situation where the foliation has a first integral ; a condition is given so that this integral is the real part of a holomorphic function.

How to cite

top

Cerveau, Dominique, and Sad, Paulo R.. "Fonctions et feuilletages Levi-Flat. Étude locale." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 3.2 (2004): 427-445. <http://eudml.org/doc/84536>.

@article{Cerveau2004,
abstract = {We define the notion of CR equivalence for Levi-flat foliations and compare in a local setting these foliations to their linear parts. We study also the situation where the foliation has a first integral ; a condition is given so that this integral is the real part of a holomorphic function.},
affiliation = {Institut de Recherches Mathématiques de Rennes Université de Rennes 1 Campus de Beaulieu 35042 Rennes, France; Instituto de Matemática Pura e Aplicada Estrada D. Castorina 110, Jardim Botânico 22320-010 Rio de Janeiro, Brasil},
author = {Cerveau, Dominique, Sad, Paulo R.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {fre},
number = {2},
pages = {427-445},
publisher = {Scuola Normale Superiore, Pisa},
title = {Fonctions et feuilletages Levi-Flat. Étude locale},
url = {http://eudml.org/doc/84536},
volume = {3},
year = {2004},
}

TY - JOUR
AU - Cerveau, Dominique
AU - Sad, Paulo R.
TI - Fonctions et feuilletages Levi-Flat. Étude locale
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2004
PB - Scuola Normale Superiore, Pisa
VL - 3
IS - 2
SP - 427
EP - 445
AB - We define the notion of CR equivalence for Levi-flat foliations and compare in a local setting these foliations to their linear parts. We study also the situation where the foliation has a first integral ; a condition is given so that this integral is the real part of a holomorphic function.
LA - fre
UR - http://eudml.org/doc/84536
ER -

References

top
  1. [Ca] E. Cartan, Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes, Ann. Mat. Pura Appl. (4), 11 (1933), 17-90. Zbl0005.37304MR1553196
  2. [C-M] S.S. Chern – J. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219-271. Zbl0302.32015MR425155
  3. [Ba] M.S. Baouendi – P. Ebenfelt – L. Rothschild, “Real submanifolds in complex space and their mappings”, Princeton Mathematical Series, 47 (1999). Zbl0944.32040MR1668103
  4. [B-G] D. Burns – X. Gong, Singular Levi-flat real analytic hypersurfaces, Amer. J. Math. 121 (1999), 23-53. Zbl0931.32009MR1704996
  5. [K] I. Kupka, The singularities of integrable structurally stable Pfaffian forms, Proc. Natl. Acad. Sci. USA 52 (1964), 1431-1432. Zbl0137.41404MR173214
  6. [Mal I] B. Malgrange, Frobenius avec singularités I : Codimension un, Inst. Hautes Études Sci. Publ. Math. No. 46 (1976), 163-173. Zbl0355.32013MR508169
  7. [Mal II] B. Malgrange, Frobenius avec singularités II : Le cas général, Invent. Math. 39 (1977), 67-89. Zbl0375.32012MR508170
  8. [Mo] R. Moussu, Sur l’existence d’intégrales premières pour un germe de forme de Pfaff, Ann. Inst. Fourier (Grenoble) 26 (1976), 171-220. Zbl0328.58002MR415657
  9. [Po] H. Poincaré, “Note sur les propriétés des fonctions définies par les équations différentielles”, Oeuvres t.I, XXXVI, Gauthier-Villars, 1951. 
  10. [Re] G. Reeb, “Sur certains propriétés topologiques des variétés feuilletés”, Actual. Sci. Indust., 1183, Hermann, 1952. Zbl0049.12602MR55692
  11. [Sa] K. Saito, On a generalization of de-Rham lemma, Ann. Inst. Fourier (Grenoble) 26 (1976), 165-170. Zbl0338.13009MR413155

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.