On volumes of arithmetic quotients of S O ( 1 , n )

Mikhail Belolipetsky[1]

  • [1] Sobolev Institute of Mathematics Koptyuga 4 630090 Novosibirsk, Russia and Max Planck Institute of Mathematics Vivatsgasse 7 53111 Bonn, Germany

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2004)

  • Volume: 3, Issue: 4, page 749-770
  • ISSN: 0391-173X

Abstract

top
We apply G. Prasad’s volume formula for the arithmetic quotients of semi-simple groups and Bruhat-Tits theory to study the covolumes of arithmetic subgroups of S O ( 1 , n ) . As a result we prove that for any even dimension  n there exists a unique compact arithmetic hyperbolic n -orbifold of the smallest volume. We give a formula for the Euler-Poincaré characteristic of the orbifolds and present an explicit description of their fundamental groups as the stabilizers of certain lattices in quadratic spaces. We also study hyperbolic 4 -manifolds defined arithmetically and obtain a number theoretical characterization of the smallest compact arithmetic 4 -manifold.

How to cite

top

Belolipetsky, Mikhail. "On volumes of arithmetic quotients of $SO (1, n)$." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 3.4 (2004): 749-770. <http://eudml.org/doc/84548>.

@article{Belolipetsky2004,
abstract = {We apply G. Prasad’s volume formula for the arithmetic quotients of semi-simple groups and Bruhat-Tits theory to study the covolumes of arithmetic subgroups of $SO(1,n)$. As a result we prove that for any even dimension $n$ there exists a unique compact arithmetic hyperbolic $n$-orbifold of the smallest volume. We give a formula for the Euler-Poincaré characteristic of the orbifolds and present an explicit description of their fundamental groups as the stabilizers of certain lattices in quadratic spaces. We also study hyperbolic $4$-manifolds defined arithmetically and obtain a number theoretical characterization of the smallest compact arithmetic $4$-manifold.},
affiliation = {Sobolev Institute of Mathematics Koptyuga 4 630090 Novosibirsk, Russia and Max Planck Institute of Mathematics Vivatsgasse 7 53111 Bonn, Germany},
author = {Belolipetsky, Mikhail},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {749-770},
publisher = {Scuola Normale Superiore, Pisa},
title = {On volumes of arithmetic quotients of $SO (1, n)$},
url = {http://eudml.org/doc/84548},
volume = {3},
year = {2004},
}

TY - JOUR
AU - Belolipetsky, Mikhail
TI - On volumes of arithmetic quotients of $SO (1, n)$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2004
PB - Scuola Normale Superiore, Pisa
VL - 3
IS - 4
SP - 749
EP - 770
AB - We apply G. Prasad’s volume formula for the arithmetic quotients of semi-simple groups and Bruhat-Tits theory to study the covolumes of arithmetic subgroups of $SO(1,n)$. As a result we prove that for any even dimension $n$ there exists a unique compact arithmetic hyperbolic $n$-orbifold of the smallest volume. We give a formula for the Euler-Poincaré characteristic of the orbifolds and present an explicit description of their fundamental groups as the stabilizers of certain lattices in quadratic spaces. We also study hyperbolic $4$-manifolds defined arithmetically and obtain a number theoretical characterization of the smallest compact arithmetic $4$-manifold.
LA - eng
UR - http://eudml.org/doc/84548
ER -

References

top
  1. [BG] M. Belolipetsky – W. T. Gan, The mass of unimodular lattices, J. Number Theory, to appear. Zbl1076.11025MR2167969
  2. [BP] A. Borel – G. Prasad, Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups, Inst. Hautes Études Sci. Publ. Math. 69 (1989), 119-171; Addendum, ibid. 71 (1990), 173-177. Zbl0707.11032MR1019963
  3. [B] N. Bourbaki, “Groups et Algèbres de Lie, chapitres IV, V et VI”, Paris, Hermann, 1968. Zbl0186.33001
  4. [BT] F. Bruhat – J. Tits, Groupes réductifs sur un corps local, I; II, Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5-251; 60 (1984), 5-184. Zbl0254.14017MR327923
  5. [BFPOD] J. Buchmann – D. Ford – M. Pohst – M. Oliver – F. Diaz y Diaz, Tables of number fields of low degree, ftp://megrez.math.u-bordeaux.fr/pub/numberfields/. 
  6. [CR] V. I. Chernousov – A. A. Ryzhkov, On the classification of maximal arithmetic subgroups of simply connected groups, Sb. Math. 188 (1997), 1385-1413. Zbl0899.20026MR1481667
  7. [CF] T. Chinburg – E. Friedman, The smallest arithmetic hyperbolic three-orbifold, Invent. Math. 86 (1986), 507-527. Zbl0643.57011MR860679
  8. [CFJR] T. Chinburg – E. Friedman – K. N. Jones – A. W. Reid, The arithmetic hyperbolic 3-manifold of smallest volume, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 30 (2001), 1-40. Zbl1008.11015MR1882023
  9. [D] M. Davis, A hyperbolic 4 -manifold, Proc. Amer. Math. Soc. 93 (1985), 325-328. Zbl0533.51015MR770546
  10. [EM] B. Everitt – C. Maclachlan, Constructing hyperbolic manifolds, In: “Computational and geometric aspects of modern algebra (Edinburgh, 1998)”, London Math. Soc. Lecture Note Ser., No. 275, Cambridge Univ. Press, Cambridge, 2000, pp. 78-86. Zbl1016.57011MR1776768
  11. [GHY] W. T. Gan – J. Hanke – J.-K. Yu, On an exact mass formula of Shimura, Duke Math. J. 107 (2001), 103-133. Zbl1023.11019MR1815252
  12. [Gi] G. W. Gibbons, Real tunnelling geometries, Classical Quantum Gravity 15 (1998), 2605-2612. Zbl0935.83016MR1649661
  13. [Gr] B. H. Gross, On the motive of a reductive group, Invent. Math. 130 (1997), 287-313. Zbl0904.11014MR1474159
  14. [H] G. Harder, Halbeinfache Gruppenschemata ber Dedekindringen, Invent. Math. 4 (1967), 165-191. Zbl0158.39502MR225785
  15. [K] R. Kottwitz, Sign changes in Harmonic Analysis on Reductive Groups, Trans. Amer. Math. Soc. 278 (1983), 289-297. Zbl0538.22010MR697075
  16. [Le] S. Levy (ed.), “The eightfold way. The beauty of Klein’s quartic curve”, Math. Sci. Res. Inst. Publ. 35, Cambridge Univ. Press, Cambridge, 1999. Zbl0991.11032MR1722410
  17. [Lu] A. Lubotzky, Lattice of minimal covolume in S L 2 : a nonarchimedean analogue of Siegel’s theorem μ π / 21 , J. Amer. Math. Soc. 3 (1990), 961-975. Zbl0731.22009MR1070003
  18. [Od] A. M. Odlyzko, Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: a survey of recent results, Sém. Théor. Nombres Bordeaux (2) 2 (1990), 119-141. Zbl0722.11054MR1061762
  19. [Ono] T. Ono, On algebraic groups and discontinuous groups, Nagoya Math. J. 27 (1966), 279-322. Zbl0166.29802MR199193
  20. [Pl] V. P. Platonov, On the maximality problem of arithmetic groups, Soviet Math. Dokl. 12 (1971), 1431-1435. Zbl0252.20050MR292840
  21. [P] G. Prasad, Volumes of S -arithmetic quotients of semi-simple groups, Inst. Hautes Études Sci. Publ. Math. 69 (1989), 91-117. Zbl0695.22005MR1019962
  22. [RT] J. Ratcliffe – S. Tschantz, Volumes of integral congruence hyperbolic manifolds, J. Reine Angew. Math. 488 (1997), 55-78. Zbl0873.11031MR1465367
  23. [R] J. Rohlfs, Die maximalen arithmetisch definierten Untergruppen zerfallender einfacher Gruppen, Math. Ann. 244 (1979), 219-231. Zbl0426.20030MR553253
  24. [S] J.-P. Serre, Cohomologie des groupes discrets, In: “Prospects in mathematics”, Ann. of Math. Studies, No. 70, Princeton Univ. Press, Princeton, 1971, pp. 77-169. Zbl0235.22020MR385006
  25. [T] J. Tits, Reductive groups over local fields, In: “Automorphic forms, representations and L -functions”, Proc. Sympos. Pure Math., XXXIII, Part 1, Amer. Math. Soc., Providence, 1979, pp. 29-69. Zbl0415.20035MR546588
  26. [V] E. B. Vinberg, On groups of unit elements of certain quadratic forms, Math. USSR-Sb. 16 (1972), 17-35. Zbl0252.20054
  27. [W] A. Weil, “Adèles and algebraic groups”, Birkhäuser, Boston, 1982. Zbl0493.14028MR670072

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.