On volumes of arithmetic quotients of
- [1] Sobolev Institute of Mathematics Koptyuga 4 630090 Novosibirsk, Russia and Max Planck Institute of Mathematics Vivatsgasse 7 53111 Bonn, Germany
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2004)
- Volume: 3, Issue: 4, page 749-770
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topBelolipetsky, Mikhail. "On volumes of arithmetic quotients of $SO (1, n)$." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 3.4 (2004): 749-770. <http://eudml.org/doc/84548>.
@article{Belolipetsky2004,
abstract = {We apply G. Prasad’s volume formula for the arithmetic quotients of semi-simple groups and Bruhat-Tits theory to study the covolumes of arithmetic subgroups of $SO(1,n)$. As a result we prove that for any even dimension $n$ there exists a unique compact arithmetic hyperbolic $n$-orbifold of the smallest volume. We give a formula for the Euler-Poincaré characteristic of the orbifolds and present an explicit description of their fundamental groups as the stabilizers of certain lattices in quadratic spaces. We also study hyperbolic $4$-manifolds defined arithmetically and obtain a number theoretical characterization of the smallest compact arithmetic $4$-manifold.},
affiliation = {Sobolev Institute of Mathematics Koptyuga 4 630090 Novosibirsk, Russia and Max Planck Institute of Mathematics Vivatsgasse 7 53111 Bonn, Germany},
author = {Belolipetsky, Mikhail},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {749-770},
publisher = {Scuola Normale Superiore, Pisa},
title = {On volumes of arithmetic quotients of $SO (1, n)$},
url = {http://eudml.org/doc/84548},
volume = {3},
year = {2004},
}
TY - JOUR
AU - Belolipetsky, Mikhail
TI - On volumes of arithmetic quotients of $SO (1, n)$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2004
PB - Scuola Normale Superiore, Pisa
VL - 3
IS - 4
SP - 749
EP - 770
AB - We apply G. Prasad’s volume formula for the arithmetic quotients of semi-simple groups and Bruhat-Tits theory to study the covolumes of arithmetic subgroups of $SO(1,n)$. As a result we prove that for any even dimension $n$ there exists a unique compact arithmetic hyperbolic $n$-orbifold of the smallest volume. We give a formula for the Euler-Poincaré characteristic of the orbifolds and present an explicit description of their fundamental groups as the stabilizers of certain lattices in quadratic spaces. We also study hyperbolic $4$-manifolds defined arithmetically and obtain a number theoretical characterization of the smallest compact arithmetic $4$-manifold.
LA - eng
UR - http://eudml.org/doc/84548
ER -
References
top- [BG] M. Belolipetsky – W. T. Gan, The mass of unimodular lattices, J. Number Theory, to appear. Zbl1076.11025MR2167969
- [BP] A. Borel – G. Prasad, Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups, Inst. Hautes Études Sci. Publ. Math. 69 (1989), 119-171; Addendum, ibid. 71 (1990), 173-177. Zbl0707.11032MR1019963
- [B] N. Bourbaki, “Groups et Algèbres de Lie, chapitres IV, V et VI”, Paris, Hermann, 1968. Zbl0186.33001
- [BT] F. Bruhat – J. Tits, Groupes réductifs sur un corps local, I; II, Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5-251; 60 (1984), 5-184. Zbl0254.14017MR327923
- [BFPOD] J. Buchmann – D. Ford – M. Pohst – M. Oliver – F. Diaz y Diaz, Tables of number fields of low degree, ftp://megrez.math.u-bordeaux.fr/pub/numberfields/.
- [CR] V. I. Chernousov – A. A. Ryzhkov, On the classification of maximal arithmetic subgroups of simply connected groups, Sb. Math. 188 (1997), 1385-1413. Zbl0899.20026MR1481667
- [CF] T. Chinburg – E. Friedman, The smallest arithmetic hyperbolic three-orbifold, Invent. Math. 86 (1986), 507-527. Zbl0643.57011MR860679
- [CFJR] T. Chinburg – E. Friedman – K. N. Jones – A. W. Reid, The arithmetic hyperbolic 3-manifold of smallest volume, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 30 (2001), 1-40. Zbl1008.11015MR1882023
- [D] M. Davis, A hyperbolic -manifold, Proc. Amer. Math. Soc. 93 (1985), 325-328. Zbl0533.51015MR770546
- [EM] B. Everitt – C. Maclachlan, Constructing hyperbolic manifolds, In: “Computational and geometric aspects of modern algebra (Edinburgh, 1998)”, London Math. Soc. Lecture Note Ser., No. 275, Cambridge Univ. Press, Cambridge, 2000, pp. 78-86. Zbl1016.57011MR1776768
- [GHY] W. T. Gan – J. Hanke – J.-K. Yu, On an exact mass formula of Shimura, Duke Math. J. 107 (2001), 103-133. Zbl1023.11019MR1815252
- [Gi] G. W. Gibbons, Real tunnelling geometries, Classical Quantum Gravity 15 (1998), 2605-2612. Zbl0935.83016MR1649661
- [Gr] B. H. Gross, On the motive of a reductive group, Invent. Math. 130 (1997), 287-313. Zbl0904.11014MR1474159
- [H] G. Harder, Halbeinfache Gruppenschemata ber Dedekindringen, Invent. Math. 4 (1967), 165-191. Zbl0158.39502MR225785
- [K] R. Kottwitz, Sign changes in Harmonic Analysis on Reductive Groups, Trans. Amer. Math. Soc. 278 (1983), 289-297. Zbl0538.22010MR697075
- [Le] S. Levy (ed.), “The eightfold way. The beauty of Klein’s quartic curve”, Math. Sci. Res. Inst. Publ. 35, Cambridge Univ. Press, Cambridge, 1999. Zbl0991.11032MR1722410
- [Lu] A. Lubotzky, Lattice of minimal covolume in : a nonarchimedean analogue of Siegel’s theorem , J. Amer. Math. Soc. 3 (1990), 961-975. Zbl0731.22009MR1070003
- [Od] A. M. Odlyzko, Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: a survey of recent results, Sém. Théor. Nombres Bordeaux (2) 2 (1990), 119-141. Zbl0722.11054MR1061762
- [Ono] T. Ono, On algebraic groups and discontinuous groups, Nagoya Math. J. 27 (1966), 279-322. Zbl0166.29802MR199193
- [Pl] V. P. Platonov, On the maximality problem of arithmetic groups, Soviet Math. Dokl. 12 (1971), 1431-1435. Zbl0252.20050MR292840
- [P] G. Prasad, Volumes of -arithmetic quotients of semi-simple groups, Inst. Hautes Études Sci. Publ. Math. 69 (1989), 91-117. Zbl0695.22005MR1019962
- [RT] J. Ratcliffe – S. Tschantz, Volumes of integral congruence hyperbolic manifolds, J. Reine Angew. Math. 488 (1997), 55-78. Zbl0873.11031MR1465367
- [R] J. Rohlfs, Die maximalen arithmetisch definierten Untergruppen zerfallender einfacher Gruppen, Math. Ann. 244 (1979), 219-231. Zbl0426.20030MR553253
- [S] J.-P. Serre, Cohomologie des groupes discrets, In: “Prospects in mathematics”, Ann. of Math. Studies, No. 70, Princeton Univ. Press, Princeton, 1971, pp. 77-169. Zbl0235.22020MR385006
- [T] J. Tits, Reductive groups over local fields, In: “Automorphic forms, representations and -functions”, Proc. Sympos. Pure Math., XXXIII, Part 1, Amer. Math. Soc., Providence, 1979, pp. 29-69. Zbl0415.20035MR546588
- [V] E. B. Vinberg, On groups of unit elements of certain quadratic forms, Math. USSR-Sb. 16 (1972), 17-35. Zbl0252.20054
- [W] A. Weil, “Adèles and algebraic groups”, Birkhäuser, Boston, 1982. Zbl0493.14028MR670072
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.