Commensurability classes and volumes of hyperbolic 3-manifolds
A. Borel (1981)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
A. Borel (1981)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Michael Gromov, I. Piatetski-Shapiro (1987)
Publications Mathématiques de l'IHÉS
Similarity:
Ted Chinburg, Eduardo Friedman, Kerry N. Jones, Alan W. Reid (2001)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Armand Borel, Gopal Prasad (1989)
Publications Mathématiques de l'IHÉS
Similarity:
Ted Chinburg, Eduardo Friedman (2000)
Annales de l'institut Fourier
Similarity:
Given a maximal arithmetic Kleinian group , we compute its finite subgroups in terms of the arithmetic data associated to by Borel. This has applications to the study of arithmetic hyperbolic 3-manifolds.
Mikhail Belolipetsky (2007)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
There are errors in the proof of uniqueness of arithmetic subgroups of the smallest covolume. In this note we correct the proof, obtain certain results which were stated as a conjecture, and we give several remarks on further developments.
Slavyana Geninska (2014)
Annales de la faculté des sciences de Toulouse Mathématiques
Similarity:
This is a small survey paper about connections between the arithmetic and geometric properties in the case of arithmetic Fuchsian groups.
B. Sury (1992)
Manuscripta mathematica
Similarity: