The arithmetic hyperbolic 3-manifold of smallest volume

Ted Chinburg; Eduardo Friedman; Kerry N. Jones; Alan W. Reid

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2001)

  • Volume: 30, Issue: 1, page 1-40
  • ISSN: 0391-173X

How to cite


Chinburg, Ted, et al. "The arithmetic hyperbolic 3-manifold of smallest volume." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 30.1 (2001): 1-40. <>.

author = {Chinburg, Ted, Friedman, Eduardo, Jones, Kerry N., Reid, Alan W.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Weeks manifold; Meyerhoff manifold},
language = {eng},
number = {1},
pages = {1-40},
publisher = {Scuola normale superiore},
title = {The arithmetic hyperbolic 3-manifold of smallest volume},
url = {},
volume = {30},
year = {2001},

AU - Chinburg, Ted
AU - Friedman, Eduardo
AU - Jones, Kerry N.
AU - Reid, Alan W.
TI - The arithmetic hyperbolic 3-manifold of smallest volume
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2001
PB - Scuola normale superiore
VL - 30
IS - 1
SP - 1
EP - 40
LA - eng
KW - Weeks manifold; Meyerhoff manifold
UR -
ER -


  1. [Ad] C. Adams, The noncompact hyperbolic 3-manifold of minimal volume, Proc. Amer. Math. Soc. 100 (1987), 601-606. Zbl0634.57008MR894423
  2. [At] M. Atria, Lower bounds for discriminants of octic number fields having six real places, Preprint (1996). 
  3. [BMO] A.M. Bergé - J. Martinet - M. Olivier, The computation of sextic fields with a quadratic subfield, Math. Comp. 54 (1990), 869-884. Zbl0709.11056MR1011438
  4. [Bo] A. Borel, Commensurability classes and volumes of hyperbolic 3-manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 8 (1981), 1-33. Zbl0473.57003MR616899
  5. [Ch] T. Chinburg, A small arithmetic hyperbolic 3-manifold, Proc. Amer. Math. Soc. 100 (1987), 140-144. Zbl0621.57006MR883417
  6. [CF1] T. Chinburg - E. Friedman, The smallest arithmetic hyperbolic three-orbifold, Invent. Math. 86 (1986), 507-527. Zbl0643.57011MR860679
  7. [CF2] T. Chinburg - E. Friedman, Finite subgroups of maximal arithmetic subgroups of PGL(2, C), Ann. Inst. Fourier (Grenoble) 50 (2000), 1765-1798. Zbl0973.20040MR1817383
  8. [CF3] T. Chinburg - E. Friedman, An embedding theorem for quaternion algebras, J. London Math. Soc. (2) 60 (1999), 33-44. Zbl0940.11053MR1721813
  9. [CF4] T. Chinburg - E. Friedman, Hilbert symbols, class groups and quaternion algebras, J. Théorie Nombres Bordeaux12 (2000), 367-377. Zbl0973.11097MR1823190
  10. [Co] H. Cohen et al., PARI, Freeware available by anonymous FTP from, directory pub/pari. 
  11. [Cu] M. Culler, Lifting representations to covering groups, Adv. Math.59 (1986), 64-70. Zbl0582.57001MR825087
  12. [CS1] M. Culler - P.B. Shalen, Paradoxical decompositions, 2-generator Kleinian groups and volumes of hyperbolic 3-manifolds, J. Amer. Math. Soc.5 (1992), 231-288. Zbl0769.57010MR1135928
  13. [CS2] M. Culler - P.B. Shalen, Volumes of Haken manifolds, I, Invent. Math.118 (1994), 285-329. Zbl0862.57008MR1292114
  14. [CS3] M. Culler - P.B. Shalen, Varieties of group representations and splittings of 3-manifolds, Ann. of Math.117 (1983), 109-146. Zbl0529.57005MR683804
  15. [CHS] M. Culler - S. Hersonsky - P.B. Shalen, The first betti number of the smallest closed hyperbolic 3-manifold, Topology37 (1998), 805-849. Zbl0893.57015MR1607748
  16. [EEK] A.L. Edmonds - J.H. Ewing - R.S. Kulkarni, Torsion free subgroups of Fuchsian groups and tessellations of surfaces, Invent. Math.69 (1982), 331-346. Zbl0498.20033MR679761
  17. [GMT] D. Gabai - G.R. Meyerhoff - N. Thurston, Homotopy hyperbolic 3-manifolds are hyperbolic, To appear Ann. of Math. Zbl1052.57019MR1973051
  18. [GMMR] F.W. Gehring - C. Maclachlan - G.J. Martin - A.W. Reid, Arithmeticity, discreteness and volume, Trans. Amer. Math. Soc.349 (1997), 3611-3643. Zbl0889.30031MR1433117
  19. [GM] F.W. Gehring - G.J. Martin, Precisely invariant collars and the volume of hyperbolic 3-folds, J. Differential Geom.49 (1998), 411-435. Zbl0989.57010MR1669657
  20. [Gr] M. Gromov, "Hyperbolic Manifolds According to Thurston and Jørgensen", Séminaire Bourbaki 546, L.N.M. 842, Springer Verlag, Berlin, 1981. Zbl0452.51017MR636516
  21. [HW] C.D. Hodgson - J. Weeks, Symmetries, isometries, and length spectra of closed hyperbolic 3-manifolds, Experimental Math.3 (1994), 101-113. Zbl0841.57020MR1341719
  22. [JRI] K.N. Jones - A.W. Reid, Minimal index torsion-free subgroups of Kleinian groups, Math. Ann.310 (1998), 235-250. Zbl0890.57016MR1602004
  23. [JR2] K.N. Jones - A.W. Reid, Computational methods in arithmetic Kleinian groups, in preparation. 
  24. [MR1] C. Maclachlan - A.W. Reid, Commensurability classes of arithmetic Kleinian groups and their Fuchsian subgroups, Math. Proc. Cambridge Philos. Soc. 102 (1987), 251-257. Zbl0632.30043MR898145
  25. [MR2] C. Maclachlan - A.W. Reid, "The Arithmetic of Hyperbolic 3-Manifolds ", To appear Springer Verlag. Zbl1025.57001MR1937957
  26. [Ma] J. Martinet, Petits discriminants des corps de nombres, In: "Armitage", J. V. (ed.), Proceedings of the Journeés Arithmétiques1980. London Math. Soc. Lecture Notes series 56Cambridge Univ. Press1982, pp. 151-193. Zbl0491.12005MR697261
  27. [MV] A. Mednykh - A. Vesnin, Visualization of the isometry group action on the Fomenko Matveev Weeks manifold, J. Lie Theory8 (1998), 51-66. Zbl0891.57014MR1616790
  28. [Mo] G.D. Mostow, Quasi-conformal mappings in n-space and the rigidity ofhyperbolic spaceforms, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 53-104. spaceforms, Inst. Hautes Etudes Sci. Publ. Math. 34 (1968), 53-104. Zbl0189.09402MR236383
  29. [O1] M. Olivier, Corps sextiques primitifs, Ann. Inst. Fourier (Grenoble) 40 (1990), 757-767. Zbl0734.11054MR1096589
  30. [O2] M. Olivier, The computation of sextic fields with a cubic subfield and no quadratic subfield, Math. Comp. 58 (1992), 419-432. Zbl0746.11041MR1106977
  31. [Po] G. Poitou, Sur les petits discriminants, Séminaire Delange-Pisot-Poitou, Exposé n° 6Paris, (1976/ 77), 6-01-6-18. Zbl0393.12010MR551335
  32. [Pr] G. Prasad, Q-rank one lattices, Invent. Math.21 (1973), 255-286. Zbl0264.22009MR385005
  33. [Prz] A. Przeworski, Cones embedded in hyperbolic 3-manifolds, Preprint (2000). 
  34. [RW] A.W. Reid - S. Wang, Non-Haken 3-manifolds are not large with respect to mappings of non-zero degree, Comm. Anal. Geom.7 (1999), 105-132. Zbl0930.57012MR1674109
  35. [Th] W. Thurston, "The Geometry and Topology of 3-Manifolds", Mimeographed Lecture Notes, Princeton Univ., 1977. 
  36. [Vi] M.-F. Vignéras, "Arithmétique des algèbres de Quaternions", L.N.M.800, Springer Verlag, Berlin, 1980. Zbl0422.12008MR580949
  37. [We1] J. Weeks, "Hyperbolic Structures on 3-manifolds", Ph. D. Thesis, Princeton University, 1985. 
  38. [We2] J. Weeks, SnapPea: A computer program for creating and studying hyperbolic 3- manifolds, available by anonymous ftp from 

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.