The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The recurrence dimension for piecewise monotonic maps of the interval”

On the distribution function of the majorant of ergodic means

Lasha Epremidze (1992)

Studia Mathematica

Similarity:

Let T be a measure-preserving ergodic transformation of a measure space (X,,μ) and, for f ∈ L(X), let f * = s u p N 1 / N m = 0 N - 1 f T m . In this paper we mainly investigate the question of whether (i) ʃ a | μ ( f * > t ) - 1 / t ʃ ( f * > t ) f d μ | d t < and whether (ii) ʃ a | μ ( f * > t ) - 1 / t ʃ ( f > t ) f d μ | d t < for some a > 0. It is proved that (i) holds for every f ≥ 0. (ii) holds if f ≥ 0 and f log log (f + 3) ∈ L(X) or if μ(X) = 1 and the random variables f T m are independent. Related inequalities are proved. Some examples and counterexamples are constructed. Several known results are obtained as corollaries. ...

Process-level quenched large deviations for random walk in random environment

Firas Rassoul-Agha, Timo Seppäläinen (2011)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We consider a bounded step size random walk in an ergodic random environment with some ellipticity, on an integer lattice of arbitrary dimension. We prove a level 3 large deviation principle, under almost every environment, with rate function related to a relative entropy.