Différentiabilité fine et différentiabilité sur des compacts

Michèle Mastrangelo

Bulletin de la Société Mathématique de France (1980)

  • Volume: 108, page 3-15
  • ISSN: 0037-9484

How to cite

top

Mastrangelo, Michèle. "Différentiabilité fine et différentiabilité sur des compacts." Bulletin de la Société Mathématique de France 108 (1980): 3-15. <http://eudml.org/doc/87380>.

@article{Mastrangelo1980,
author = {Mastrangelo, Michèle},
journal = {Bulletin de la Société Mathématique de France},
keywords = {newtonian potential; differential; brownian process},
language = {fre},
pages = {3-15},
publisher = {Société mathématique de France},
title = {Différentiabilité fine et différentiabilité sur des compacts},
url = {http://eudml.org/doc/87380},
volume = {108},
year = {1980},
}

TY - JOUR
AU - Mastrangelo, Michèle
TI - Différentiabilité fine et différentiabilité sur des compacts
JO - Bulletin de la Société Mathématique de France
PY - 1980
PB - Société mathématique de France
VL - 108
SP - 3
EP - 15
LA - fre
KW - newtonian potential; differential; brownian process
UR - http://eudml.org/doc/87380
ER -

References

top
  1. [1] FUGLEDE (B.). — Finely harmonic functions. — Berlin, Springer-Verlag, 1972 (Lecture Notes in mathematics. 289). Zbl0248.31010MR56 #8883
  2. [2] FUGLEDE (B.). — Remarks on fine continuity and the base operation in potential theory, Math. Ann. (à paraître). Zbl0273.31014
  3. [3] MASTRANGELO (M.) et DEHEN (D.). — Différentiabilité fine, Différentiabilité stochastique, différentiabilité stochastique de fonctions finement harmoniques, Ann. Inst. Fourier, Grenoble, t. 28, 1978, fasc. 2, p. 161-186. Zbl0371.60079MR58 #7874
  4. [4] MEYER (P.-A.). — Processus de Markov. — Berlin, Springer-Verlag, 1967 (Lecture Notes in Mathematics, 26). Zbl0189.51403MR36 #2219
  5. [5] STEIN (E. M.). — Singular integrals and differentiability properties of functions. — Princeton, Princeton University Press, 1970 (Princeton mathematical Series, 30). Zbl0207.13501MR44 #7280
  6. [6] WHITNEY (H.). — Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. math. Soc., t. 36, 1934, p. 63-89. Zbl0008.24902MR1501735JFM60.0217.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.