La K-théorie stable

Christian Kassel

Bulletin de la Société Mathématique de France (1982)

  • Volume: 110, page 381-416
  • ISSN: 0037-9484

How to cite

top

Kassel, Christian. "La K-théorie stable." Bulletin de la Société Mathématique de France 110 (1982): 381-416. <http://eudml.org/doc/87424>.

@article{Kassel1982,
author = {Kassel, Christian},
journal = {Bulletin de la Société Mathématique de France},
keywords = {simplicial ring; algebraic K-groups; stable K-groups; Hochschild homology; spectral sequence},
language = {fre},
pages = {381-416},
publisher = {Société mathématique de France},
title = {La K-théorie stable},
url = {http://eudml.org/doc/87424},
volume = {110},
year = {1982},
}

TY - JOUR
AU - Kassel, Christian
TI - La K-théorie stable
JO - Bulletin de la Société Mathématique de France
PY - 1982
PB - Société mathématique de France
VL - 110
SP - 381
EP - 416
LA - fre
KW - simplicial ring; algebraic K-groups; stable K-groups; Hochschild homology; spectral sequence
UR - http://eudml.org/doc/87424
ER -

References

top
  1. [1] ANDERSON (D. W.). — Chain functors and homology theories, Symp. Alg. Top. 1971, Springer Lect. Notes in Math. n° 249, 1-12. Zbl0229.55005MR49 #3895
  2. [2] DENNIS (R. K.). — Algebraic K-theory and Hochschild homology, exposé (non publié), Conf. Evanston, janvier 1976. 
  3. [3] DWYER (W.). — Twisted homological stability for general linear groups, Ann. of Math. 111 (1980), 239-251. Zbl0404.18012MR81b:18006
  4. [4] EVENS (L.) et FRIEDLANDER (E.). — On K*(ℤ/p2ℤ) and related homology groups, Trans. A.M.S. 270 (1982), 1-46. Zbl0492.18008MR83j:18013
  5. [5] FARRELL (T.) et HSIANG (W. C.). — On the rational homotopy groups of the diffeomorphism groups of spheres, discs and aspherical manifolas, Proc. Symp. Pure Math. 32 (1978) I, 325-338. Zbl0393.55018
  6. [6] IGUSA (K.). — What happens to Hatcher and Wagoner's formula for π0C(M) when the first Postnikov invariant of M is non-trivial ?, préprint Brandeis U. Zbl0546.57015
  7. [7] KAN (D. M.). — A combinatorial definition of homotopy groups, Ann. of Math. 67 (1958), 282-312. Zbl0091.36901MR22 #1897
  8. [8] VANDER KALLEN (W.). — Homology stability for linear groups, Inv. Math. 60 (1980), 269-295. Zbl0415.18012MR82c:18011
  9. [9] KASSEL (C.). — Calcul algébrique de l'homologie de certains groupes de matrices, à paraître au Journal of Algebra (1982). Zbl0511.18014
  10. [10] KASSEL (C.). — K-théorie relative d'un idéal bilatère de carré nul, Conf. K-théorie alg. Evanston 1980, Springer Lect. Notes in Math. n° 854, 249-261. Zbl0537.18006MR82i:18015
  11. [11] KASSEL (C.). — Homologie du groupe linéaire général et K-théorie stable, Thèse, Université de Strasbourg, juin 1981. 
  12. [12] KASSEL (C.). — Stabilisation de la K-théorie algébrique des espaces topologiques, à paraître aux Ann. Sc. E.N.S. 15 (1982). Zbl0515.18009
  13. [13] LANG (S.). — Algebra, Addison Wesley (1965). Zbl0193.34701MR33 #5416
  14. [14] LODAY (J.-L.). — K-théorie algébrique et représentations de groupes, Ann. Sc. E.N.S. 9 (1976), 309-377. Zbl0362.18014MR56 #5686
  15. [15] LODAY (J.-L.). — Homotopie des espaces de concordances, Sém. Bourbaki n° 516, Springer Lect. Notes in Math. n° 710. Zbl0443.57023
  16. [16] MACLANE (S.). — Homology, Springer Verlag (1963). Zbl0133.26502MR28 #122
  17. [17] MAY (J. P.). — Simplicial objects in algebraic topology, Van Nostrand (1967). Zbl0165.26004MR36 #5942
  18. [18] MAY (J. P.). — A∞-ring spaces and algebraic K-theory, Springer Lect. Notes in Math. n° 658, 240-315. Zbl0425.18014MR80k:55015
  19. [19] RAGHUNATHAN (M. S.). — A note on quotients of real algebraic groups by arithmetic subgroups, Inv. Math. 4 (1968), 318-335. Zbl0218.22015MR37 #5894
  20. [20] SERRE (J.-P.). — Groupes d'homotopie et classes de groupes abéliens, Ann. of Math. 58 (1953), 258-294. Zbl0052.19303MR15,548c
  21. [21] SNAITH (V.). — On K3 of dual numbers, preprint Western Ontario 1980. 
  22. [22] STALLINGS (J.). — Centerless groups, an algebraic formulation of Gottlieb's theorem, Topology 4 (1965), 129-134. Zbl0201.36001MR34 #2666
  23. [23] WALDHAUSEN (F.). — Algebraic K-theory of topological spaces I, Proc. Symp. Pure Math. 32 (1978), 35-60. Zbl0414.18010MR81i:18014a
  24. [24] WALDHAUSEN (F.). — Algebraic K-theory of topological spaces II, Springer Lect. Notes in Math. n° 763 (1979), 356-394. Zbl0431.57004MR81i:18014b
  25. [25] WHITEHEAD (G. W.). — Elements of homotopy theory, Springer Verlag (1978). Zbl0406.55001MR80b:55001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.