Stabilisation de la -théorie algébrique des espaces topologiques
Annales scientifiques de l'École Normale Supérieure (1983)
- Volume: 16, Issue: 1, page 123-149
- ISSN: 0012-9593
Access Full Article
topHow to cite
topKassel, Christian. "Stabilisation de la $K$-théorie algébrique des espaces topologiques." Annales scientifiques de l'École Normale Supérieure 16.1 (1983): 123-149. <http://eudml.org/doc/82109>.
@article{Kassel1983,
author = {Kassel, Christian},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {algebraic K-theory of topological spaces; stable homotopy; homology of general linear groups; topological rings},
language = {fre},
number = {1},
pages = {123-149},
publisher = {Elsevier},
title = {Stabilisation de la $K$-théorie algébrique des espaces topologiques},
url = {http://eudml.org/doc/82109},
volume = {16},
year = {1983},
}
TY - JOUR
AU - Kassel, Christian
TI - Stabilisation de la $K$-théorie algébrique des espaces topologiques
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1983
PB - Elsevier
VL - 16
IS - 1
SP - 123
EP - 149
LA - fre
KW - algebraic K-theory of topological spaces; stable homotopy; homology of general linear groups; topological rings
UR - http://eudml.org/doc/82109
ER -
References
top- [1] D. W. ANDERSON, Chain Functors and Homology Theories, Symp. Alg. Top., 1971, Springer (Lecture Notes in Math., n° 249, p. 1-12). Zbl0229.55005MR49 #3895
- [2] A. K. BOUSFIELD et D. M. KAN, Homotopy Limits, Completions and Localizations, Springer (Lecture Notes in Math., n° 304). Zbl0259.55004MR51 #1825
- [3] E. DROR, A Generalization of Whitehead Theorem, Symp. Alg. Top., 1971, Springer (Lecture Notes in Math., n° 249, p. 13-22). Zbl0243.55018MR50 #3217
- [4] W. DWYER, Twisted Homological Stability for General Linear Groups (Ann. of Math., vol. 111, 1980, p. 239-251). Zbl0404.18012MR81b:18006
- [5] T. FARRELL et W. C. HSIANG, On the Rational Homotopy Groups of the Diffeomorphism Groups of Spheres, Discs and Aspherical Manifolds (Proc. Symp. Pure Math., vol. 32, 1978, I, p. 325-338). Zbl0393.55018
- [6] W. VAN DER KALLEN, Homology Stability for Linear Groups (Inv. Math., vol. 60, 1980, p. 269-295). Zbl0415.18012MR82c:18011
- [7] D. M. KAN, A Combinatorial Definition of Homotopy Groups (Ann. of Math., vol. 67, 1958, p. 282-312). Zbl0091.36901MR22 #1897
- [8] C. KASSEL, Un calcul d'homologie du groupe linéaire général (C.R. Acad. Sc., Paris, t. 288, 1979, p. 481-483). Zbl0411.20027MR80d:20045
- [9] C. KASSEL, Homologie du groupe linéaire général et K-théorie stable (C.R. Acad., Sc., Paris, t. 290, 1980, p. 1041-1044). Zbl0445.20020MR81f:57045
- [10] C. KASSEL, K-théorie relative d'un idéal bilatère de carré nul [Conf. Evanston, 1980, Springer (Lecture Notes in Math., n° 854, p. 249-261)]. Zbl0537.18006MR82i:18015
- [11] C. KASSEL, Le groupe K3(ℤ [ε]) n'a pas de p-torsion pour p≠2 et 3 [Conf. Oberwolfach 1980, Springer (Lecture Notes in Math.)]. Zbl0499.18016
- [12] C. KASSEL, Homologie du groupe linéaire général et K-théorie stable (Thèse d'État, Université Louis-Pasteur, Strasbourg, 1981). Zbl0445.20020
- [13] C. KASSEL, Calcul algébrique de l'homologie de certains groupes de matrices (J. of Algebra, 1982, vol. 80, n° 1). Zbl0511.18014MR84m:18015
- [14] C. KASSEL, La K-théorie stable (Bull. S.M.F., vol. 110, 1982). Zbl0507.18003MR84f:18018
- [15] R. LEE et R. H. SZCZARBA, The Group K3 (ℤ) is Cyclic or Order 48 (Ann. of Math., vol. 104, 1976, p. 31-60). Zbl0341.18008MR56 #1309
- [16] J.-L. LODAY, K-théorie algébrique et représentations de groupes (Ann. scient. Ec. Norm. Sup., vol. 9, 1976, p. 309-377). Zbl0362.18014MR56 #5686
- [17] J.-L. LODAY, Homotopie des espaces de concordances [Séminaire Bourbaki, n° 516, 1978, Springer (Lecture Notes, n° 710)]. Zbl0443.57023
- [18] J.-P. MAY, A∞-Ring Spaces and Algebraic K-Theory, Springer (Lect. Notes in Math., n° 658, II, p. 240-315). Zbl0425.18014MR80k:55015
- [19] J. MILNOR, Introduction to Algebraic K-theory (Ann. of Math., Studies n° 72, Princeton University Press, 1971). Zbl0237.18005MR50 #2304
- [20] D. QUILLEN, Letter to J. Milnor, (July, 1972), Springer (Lecture Notes in Math., n° 551, p. 182-188). Zbl0351.55003MR58 #2811
- [21] G. SEGAL, Categories and Cohomology Theories (Topology, vol. 13, 1974, p. 293-312). Zbl0284.55016MR50 #5782
- [22] J.-P. SERRE, Groupes d'homotopie et classes de groupes abéliens (Ann. of Math., vol. 58, 1953, p. 258-294). Zbl0052.19303MR15,548c
- [23] C. SOULÉ, Addendum à l'article "On the Torsion in K4 (ℤ) and K5(ℤ)" (Duke J., 1978, p. 131-132). Zbl0385.18010MR58 #11074b
- [24] M. STEINBERGER, On the Equivalence of the Two Definitions of the Algebraic K-Theory of a Topological Space, Springer (Lecture Notes in Math., n° 763). Zbl0451.55007MR81d:55008
- [25] R. STEINER, Infinite Loop Structures on the Algebraic K-Theory of Spaces (Math. Proc. Camb. Phil. Soc., vol. 90, 1981, p. 85-111). Zbl0478.55008MR82m:55013
- [26] H. TODA, p-Primary Components of Homotopy Groups IV : Composition and Toric Constructions (Memoirs, Univ. of Kyoto, vol. 32, 1959, p. 297-332). Zbl0095.16802MR22 #1906
- [27] F. WALDHAUSEN, Algebraic K-Theory of Topological Spaces I (Proc. Symp. Pure Math., vol. 32, 1978, p. 35-60). Zbl0414.18010MR81i:18014a
- [28] F. WALDHAUSEN, Algebraic K-Theory of Topological Spaces II, Springer (Lecture Notes in Math., n° 763, p. 356-394). Zbl0431.57004MR81i:18014b
- [29] G. W. WHITEHEAD, Elements of Homotopy Theory, Springer-Verlag, 1978. Zbl0406.55001MR80b:55001
- [30] J. H. C. WHITEHEAD, A Certain Exact Sequence (Ann. of Math., vol. 52, 1951, p. 51-110). Zbl0037.26101MR12,43c
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.