Stabilisation de la K -théorie algébrique des espaces topologiques

Christian Kassel

Annales scientifiques de l'École Normale Supérieure (1983)

  • Volume: 16, Issue: 1, page 123-149
  • ISSN: 0012-9593

How to cite

top

Kassel, Christian. "Stabilisation de la $K$-théorie algébrique des espaces topologiques." Annales scientifiques de l'École Normale Supérieure 16.1 (1983): 123-149. <http://eudml.org/doc/82109>.

@article{Kassel1983,
author = {Kassel, Christian},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {algebraic K-theory of topological spaces; stable homotopy; homology of general linear groups; topological rings},
language = {fre},
number = {1},
pages = {123-149},
publisher = {Elsevier},
title = {Stabilisation de la $K$-théorie algébrique des espaces topologiques},
url = {http://eudml.org/doc/82109},
volume = {16},
year = {1983},
}

TY - JOUR
AU - Kassel, Christian
TI - Stabilisation de la $K$-théorie algébrique des espaces topologiques
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1983
PB - Elsevier
VL - 16
IS - 1
SP - 123
EP - 149
LA - fre
KW - algebraic K-theory of topological spaces; stable homotopy; homology of general linear groups; topological rings
UR - http://eudml.org/doc/82109
ER -

References

top
  1. [1] D. W. ANDERSON, Chain Functors and Homology Theories, Symp. Alg. Top., 1971, Springer (Lecture Notes in Math., n° 249, p. 1-12). Zbl0229.55005MR49 #3895
  2. [2] A. K. BOUSFIELD et D. M. KAN, Homotopy Limits, Completions and Localizations, Springer (Lecture Notes in Math., n° 304). Zbl0259.55004MR51 #1825
  3. [3] E. DROR, A Generalization of Whitehead Theorem, Symp. Alg. Top., 1971, Springer (Lecture Notes in Math., n° 249, p. 13-22). Zbl0243.55018MR50 #3217
  4. [4] W. DWYER, Twisted Homological Stability for General Linear Groups (Ann. of Math., vol. 111, 1980, p. 239-251). Zbl0404.18012MR81b:18006
  5. [5] T. FARRELL et W. C. HSIANG, On the Rational Homotopy Groups of the Diffeomorphism Groups of Spheres, Discs and Aspherical Manifolds (Proc. Symp. Pure Math., vol. 32, 1978, I, p. 325-338). Zbl0393.55018
  6. [6] W. VAN DER KALLEN, Homology Stability for Linear Groups (Inv. Math., vol. 60, 1980, p. 269-295). Zbl0415.18012MR82c:18011
  7. [7] D. M. KAN, A Combinatorial Definition of Homotopy Groups (Ann. of Math., vol. 67, 1958, p. 282-312). Zbl0091.36901MR22 #1897
  8. [8] C. KASSEL, Un calcul d'homologie du groupe linéaire général (C.R. Acad. Sc., Paris, t. 288, 1979, p. 481-483). Zbl0411.20027MR80d:20045
  9. [9] C. KASSEL, Homologie du groupe linéaire général et K-théorie stable (C.R. Acad., Sc., Paris, t. 290, 1980, p. 1041-1044). Zbl0445.20020MR81f:57045
  10. [10] C. KASSEL, K-théorie relative d'un idéal bilatère de carré nul [Conf. Evanston, 1980, Springer (Lecture Notes in Math., n° 854, p. 249-261)]. Zbl0537.18006MR82i:18015
  11. [11] C. KASSEL, Le groupe K3(ℤ [ε]) n'a pas de p-torsion pour p≠2 et 3 [Conf. Oberwolfach 1980, Springer (Lecture Notes in Math.)]. Zbl0499.18016
  12. [12] C. KASSEL, Homologie du groupe linéaire général et K-théorie stable (Thèse d'État, Université Louis-Pasteur, Strasbourg, 1981). Zbl0445.20020
  13. [13] C. KASSEL, Calcul algébrique de l'homologie de certains groupes de matrices (J. of Algebra, 1982, vol. 80, n° 1). Zbl0511.18014MR84m:18015
  14. [14] C. KASSEL, La K-théorie stable (Bull. S.M.F., vol. 110, 1982). Zbl0507.18003MR84f:18018
  15. [15] R. LEE et R. H. SZCZARBA, The Group K3 (ℤ) is Cyclic or Order 48 (Ann. of Math., vol. 104, 1976, p. 31-60). Zbl0341.18008MR56 #1309
  16. [16] J.-L. LODAY, K-théorie algébrique et représentations de groupes (Ann. scient. Ec. Norm. Sup., vol. 9, 1976, p. 309-377). Zbl0362.18014MR56 #5686
  17. [17] J.-L. LODAY, Homotopie des espaces de concordances [Séminaire Bourbaki, n° 516, 1978, Springer (Lecture Notes, n° 710)]. Zbl0443.57023
  18. [18] J.-P. MAY, A∞-Ring Spaces and Algebraic K-Theory, Springer (Lect. Notes in Math., n° 658, II, p. 240-315). Zbl0425.18014MR80k:55015
  19. [19] J. MILNOR, Introduction to Algebraic K-theory (Ann. of Math., Studies n° 72, Princeton University Press, 1971). Zbl0237.18005MR50 #2304
  20. [20] D. QUILLEN, Letter to J. Milnor, (July, 1972), Springer (Lecture Notes in Math., n° 551, p. 182-188). Zbl0351.55003MR58 #2811
  21. [21] G. SEGAL, Categories and Cohomology Theories (Topology, vol. 13, 1974, p. 293-312). Zbl0284.55016MR50 #5782
  22. [22] J.-P. SERRE, Groupes d'homotopie et classes de groupes abéliens (Ann. of Math., vol. 58, 1953, p. 258-294). Zbl0052.19303MR15,548c
  23. [23] C. SOULÉ, Addendum à l'article "On the Torsion in K4 (ℤ) and K5(ℤ)" (Duke J., 1978, p. 131-132). Zbl0385.18010MR58 #11074b
  24. [24] M. STEINBERGER, On the Equivalence of the Two Definitions of the Algebraic K-Theory of a Topological Space, Springer (Lecture Notes in Math., n° 763). Zbl0451.55007MR81d:55008
  25. [25] R. STEINER, Infinite Loop Structures on the Algebraic K-Theory of Spaces (Math. Proc. Camb. Phil. Soc., vol. 90, 1981, p. 85-111). Zbl0478.55008MR82m:55013
  26. [26] H. TODA, p-Primary Components of Homotopy Groups IV : Composition and Toric Constructions (Memoirs, Univ. of Kyoto, vol. 32, 1959, p. 297-332). Zbl0095.16802MR22 #1906
  27. [27] F. WALDHAUSEN, Algebraic K-Theory of Topological Spaces I (Proc. Symp. Pure Math., vol. 32, 1978, p. 35-60). Zbl0414.18010MR81i:18014a
  28. [28] F. WALDHAUSEN, Algebraic K-Theory of Topological Spaces II, Springer (Lecture Notes in Math., n° 763, p. 356-394). Zbl0431.57004MR81i:18014b
  29. [29] G. W. WHITEHEAD, Elements of Homotopy Theory, Springer-Verlag, 1978. Zbl0406.55001MR80b:55001
  30. [30] J. H. C. WHITEHEAD, A Certain Exact Sequence (Ann. of Math., vol. 52, 1951, p. 51-110). Zbl0037.26101MR12,43c

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.