Topology of arrangements and position of singularities

Enrique Artal Bartolo

Annales de la faculté des sciences de Toulouse Mathématiques (2014)

  • Volume: 23, Issue: 2, page 223-265
  • ISSN: 0240-2963

Abstract

top
This work contains an extended version of a course given in Arrangements in Pyrénées. School on hyperplane arrangements and related topics held at Pau (France) in June 2012. In the first part, we recall the computation of the fundamental group of the complement of a line arrangement. In the second part, we deal with characteristic varieties of line arrangements focusing on two aspects: the relationship with the position of the singular points (relative to projective curves of some prescribed degrees) and the notion of essential coordinate components.

How to cite

top

Artal Bartolo, Enrique. "Topology of arrangements and position of singularities." Annales de la faculté des sciences de Toulouse Mathématiques 23.2 (2014): 223-265. <http://eudml.org/doc/275294>.

@article{ArtalBartolo2014,
abstract = {This work contains an extended version of a course given in Arrangements in Pyrénées. School on hyperplane arrangements and related topics held at Pau (France) in June 2012. In the first part, we recall the computation of the fundamental group of the complement of a line arrangement. In the second part, we deal with characteristic varieties of line arrangements focusing on two aspects: the relationship with the position of the singular points (relative to projective curves of some prescribed degrees) and the notion of essential coordinate components.},
author = {Artal Bartolo, Enrique},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {arrangements; fundamental group; braid monodromy; fibered arrangements; wiring diagrams; characteristic varieties; twisted cohomology; quasi-adjunction polytopes},
language = {eng},
month = {3},
number = {2},
pages = {223-265},
publisher = {Université Paul Sabatier, Toulouse},
title = {Topology of arrangements and position of singularities},
url = {http://eudml.org/doc/275294},
volume = {23},
year = {2014},
}

TY - JOUR
AU - Artal Bartolo, Enrique
TI - Topology of arrangements and position of singularities
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2014/3//
PB - Université Paul Sabatier, Toulouse
VL - 23
IS - 2
SP - 223
EP - 265
AB - This work contains an extended version of a course given in Arrangements in Pyrénées. School on hyperplane arrangements and related topics held at Pau (France) in June 2012. In the first part, we recall the computation of the fundamental group of the complement of a line arrangement. In the second part, we deal with characteristic varieties of line arrangements focusing on two aspects: the relationship with the position of the singular points (relative to projective curves of some prescribed degrees) and the notion of essential coordinate components.
LA - eng
KW - arrangements; fundamental group; braid monodromy; fibered arrangements; wiring diagrams; characteristic varieties; twisted cohomology; quasi-adjunction polytopes
UR - http://eudml.org/doc/275294
ER -

References

top
  1. Arapura (D.).— Geometry of cohomology support loci for local systems. I, J. Algebraic Geom. 6, no. 3, p. 563-597 (1997). Zbl0923.14010MR1487227
  2. Artal (E.).— Combinatorics and topology of line arrangements in the complex projective plane, Proc. Amer. Math. Soc. 121, no. 2, p. 385-390 (1994). Zbl0815.32020MR1189536
  3. Artal (E.).— Sur les couples de Zariski, J. Algebraic Geom. 3, no. 2, p. 223-247 (1994). Zbl0823.14013MR1257321
  4. Artal (E.), Carmona (J.), Cogolludo-Agustín (J.I.).— Braid monodromy and topology of plane curves, Duke Math. J. 118, no. 2, p. 261-278 (2003). Zbl1058.14053MR1980995
  5. Artal (E.), Carmona (J.), Cogolludo-Agustín (J.I.).— Essential coordinate components of characteristic varieties, Math. Proc. Cambridge Philos. Soc. 136, no. 2, p. 287-299 (2004). Zbl1061.14022MR2040575
  6. Artal (E.), Carmona (J.), Cogolludo-Agustín (J.I.), Marco (M.Á.). — Topology and combinatorics of real line arrangements, Compos. Math. 141, no. 6, p. 1578-1588 (2005). Zbl1085.32012MR2188450
  7. Artal (E.), Carmona (J.), Cogolludo-Agustín (J.I.), Marco (M.Á.). — Invariants of combinatorial line arrangements and Rybnikov’s example, Singularity theory and its applications (S. Izumiya, G. Ishikawa, H. Tokunaga, I. Shimada, and T. Sano, eds.), Advanced Studies in Pure Mathematics, vol. 43, Mathematical Society of Japan, Tokyo (2007). Zbl1135.32025
  8. Artal (E.), Cogolludo-Agustín (J.I.), Matei (D.).— Characteristic varieties of quasi-projective manifolds and orbifolds, Geom. Topol. 17, p. 273-309 (2013). Zbl1266.32035MR3035328
  9. Artal (E.), Cogolludo-Agustín (J.I.), Ortigas-Galindo (J.).— Kummer covers and braid monodromy, J. inst. Math. Jussieu. 
  10. Artin (E.).— Theory of braids, Ann. of Math. (2) 48, p. 101-126 (1947). Zbl0030.17703MR19087
  11. Arvola (W.A.).— The fundamental group of the complement of an arrangement of complex hyperplanes, Topology 31, no. 4, p. 757-765 (1992). Zbl0772.57001MR1191377
  12. Barth (W.P.), Peters (C.A.M.), Van de Ven (A.).— Compact complex surfaces, Erg. der Math. und ihrer Grenz., A Series of Modern Surveys in Math., 3, vol. 4, Springer-Verlag, Berlin (1984). Zbl1036.14016MR749574
  13. Carmona (J.).— Monodromía de trenzas de curvas algebraicas planas, Ph.D. thesis, Universidad de Zaragoza (2003). 
  14. Chisini (O.).— Una suggestiva rappresentazione reale per le curve algebriche piane, Ist. Lombardo, Rend., II. Ser. 66, p. 1141-1155 (1933). Zbl0008.22001
  15. Cogolludo-Agustín (J.I.).— Braid monodromy of algebraic curves, Ann. Math. Blaise Pascal 18, no. 1, p. 141-209 (2011). Zbl1254.32043MR2830090
  16. Cohen (D.C.), Suciu (A.I.).— Characteristic varieties of arrangements, Math. Proc. Cambridge Philos. Soc. 127, no. 1, p. 33-53 (1999). Zbl0963.32018MR1692519
  17. Deligne (P.).— Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math., no. 40, p. 5-57 (1971). Zbl0219.14007MR498551
  18. Esnault (H.).— Fibre de Milnor d’un cône sur une courbe plane singulière, Invent. Math. 68, no. 3, p. 477-496 (1982). Zbl0475.14018MR669426
  19. Esnault (H.), Viehweg (E.).— Revêtements cycliques, Algebraic threefolds (Varenna, 1981), Lecture Notes in Math., vol. 947, Springer, Berlin, p. 241-250 (1982). Zbl0493.14012MR672621
  20. Esnault (H.), Viehweg (E.).— Revêtements cycliques. II (autour du théorème d’annulation de J. Kollár), Géométrie algébrique et applications, II (La Rábida, 1984), Travaux en Cours, vol. 23, Hermann, Paris, p. 81-96 (1987). Zbl0632.14008MR907924
  21. Florens (V.), Guerville (B.), Marco (M.Á.).— On complex line arrangements and their boundary manifolds, Preprint available at arXiv:1305.5645v1 [math.GT] (2013). 
  22. Fujita (T.).— On the topology of noncomplete algebraic surfaces, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29, no. 3, p. 503-566 (1982). Zbl0513.14018MR687591
  23. Griffiths (P.A.), Harris (J.).— Principles of algebraic geometry, Wiley-Interscience [John Wiley & Sons], New York, 1978, Pure and Applied Mathematics. Zbl0836.14001MR507725
  24. Hamm (H.A.), Lê (D.T.).— Lefschetz theorems on quasiprojective varieties, Bull. Soc. Math. France 113, no. 2, p. 123-142 (1985). Zbl0602.14009MR820315
  25. Hironaka (E.).— Plumbing graphs for normal surface-curve pairs, Arrangements–Tokyo 1998, Adv. Stud. Pure Math., vol. 27, Kinokuniya, Tokyo, p. 127-144 (2000). Zbl1016.57016MR1796896
  26. Hironaka (E.).— Boundary manifolds of line arrangements, Math. Ann. 319, no. 1, p. 17-32 (2001). Zbl0995.32016MR1812817
  27. van Kampen (E.R.).— On the fundamental group of an algebraic curve, Amer. J. Math. 55, p. 255-260 (1933). Zbl0006.41502MR1506962
  28. Libgober (A.).— Alexander polynomial of plane algebraic curves and cyclic multiple planes, Duke Math. J. 49, no. 4, p. 833-851 (1982). Zbl0524.14026MR683005
  29. Libgober (A.).— On the homotopy type of the complement to plane algebraic curves, J. Reine Angew. Math. 367, p. 103-114 (1986). Zbl0576.14019MR839126
  30. Libgober (A.).— Invariants of plane algebraic curves via representations of the braid groups, Invent. Math. 95, no. 1, p. 25-30 (1989). Zbl0674.14015MR969412
  31. Libgober (A.).— Characteristic varieties of algebraic curves, Applications of algebraic geometry to coding theory, physics and computation (Eilat, 2001), Kluwer Acad. Publ., Dordrecht, p. 215-254 (2001). Zbl1045.14016MR1866902
  32. Libgober (A.).— Non vanishing loci of Hodge numbers of local systems, Manuscripta Math. 128, no. 1, p. 1-31 (2009). Zbl1160.14004MR2470184
  33. Loeser (F.), M. Vaquié (M.).— Le polynôme d’Alexander d’une courbe plane projective, Topology 29, no. 2, p. 163-173 (1990). Zbl0743.14013MR1056267
  34. Moishezon (B.G.).— Stable branch curves and braid monodromies, Algebraic geometry (Chicago, Ill., 1980), Lecture Notes in Math., vol. 862, Springer, Berlin, p. 107-192 (1981). Zbl0476.14005MR644819
  35. Moishezon (B.G.), Teicher (M.).— Braid group technique in complex geometry. I. Line arrangements in 2 , Braids (Santa Cruz, CA, 1986), Contemp. Math., vol. 78, Amer. Math. Soc., Providence, RI, p. 425-555 (1988). Zbl0674.14019MR975093
  36. Mumford (D.).— The topology of normal singularities of an algebraic surface and a criterion for simplicity, Inst. Hautes Études Sci. Publ. Math., no. 9, p. 5-22 (1961). Zbl0108.16801MR153682
  37. Neumann (W.D.).— A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Amer. Math. Soc. 268, no. 2, p. 299-344 (1981). Zbl0546.57002MR632532
  38. Orlik (P.), Solomon (L.).— Combinatorics and topology of complements of hyperplanes, Invent. Math. 56, no. 2, p. 167-189 (1980). Zbl0432.14016MR558866
  39. Orlik (P.), Terao (H.).— Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften, vol. 300, Springer-Verlag, Berlin (1992). Zbl0757.55001MR1217488
  40. Rybnikov (G.).— On the fundamental group of the complement of a complex hyperplane arrangement, Funct. Anal. Appl. 45, p. 137-148 (2011). Zbl1271.14085MR2848779
  41. Sakuma (M.).— Homology of abelian coverings of links and spatial graphs, Canad. J. Math. 47, no. 1, p. 201-224 (1995). Zbl0839.57001MR1319696
  42. Waldhausen (F.).— Eine Klasse von 3 -dimensionalen Mannigfaltigkeiten. I, II, Invent. Math. 3 (1967), 308-333; ibid. 4, p. 87-117 (1967). Zbl0168.44503MR235576
  43. Zariski (O.).— On the problem of existence of algebraic functions of two variables possessing a given branch curve, Amer. J. Math. 51, p. 305-328 (1929). Zbl55.0806.01MR1506719
  44. Zariski (O.).— On the irregularity of cyclic multiple planes, Ann. of Math. (2) 32, no. 3, p. 485-511 (1931). Zbl0001.40301MR1503012
  45. Zariski (O.).— On the Poincaré group of rational plane curves, Amer. J. Math. 58, p. 607-619 (1936). Zbl0014.32801MR1507185

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.