Suites récurrentes linéaires en caractéristique non nulle

Jean-Paul Bézivin

Bulletin de la Société Mathématique de France (1987)

  • Volume: 115, page 227-239
  • ISSN: 0037-9484

How to cite

top

Bézivin, Jean-Paul. "Suites récurrentes linéaires en caractéristique non nulle." Bulletin de la Société Mathématique de France 115 (1987): 227-239. <http://eudml.org/doc/87531>.

@article{Bézivin1987,
author = {Bézivin, Jean-Paul},
journal = {Bulletin de la Société Mathématique de France},
keywords = {linear recurrent sequences; Skolem-Mahler-Lech theorem; zeros; Pólya theorems},
language = {fre},
pages = {227-239},
publisher = {Société mathématique de France},
title = {Suites récurrentes linéaires en caractéristique non nulle},
url = {http://eudml.org/doc/87531},
volume = {115},
year = {1987},
}

TY - JOUR
AU - Bézivin, Jean-Paul
TI - Suites récurrentes linéaires en caractéristique non nulle
JO - Bulletin de la Société Mathématique de France
PY - 1987
PB - Société mathématique de France
VL - 115
SP - 227
EP - 239
LA - fre
KW - linear recurrent sequences; Skolem-Mahler-Lech theorem; zeros; Pólya theorems
UR - http://eudml.org/doc/87531
ER -

References

top
  1. [1] BENZAGHOU (B.). — Algèbres de Hadamard, Bull. Soc. Math. France, vol. 98, 1970, p. 209-252. Zbl0206.33203MR44 #1658
  2. [2] FURSTENBERG (H.). — Recurrence in ergodic theory and combinatorial number theory, Princeton University Press, 1981. Zbl0459.28023MR82j:28010
  3. [3] LECH (C.). — A note on recurring series, Ark Mat., vol. 2, 1952, p. 417-421. Zbl0051.27801MR15,104e
  4. [4] MAHLER (K.). — On the Taylor coefficients of rational functions, Proc. Cambridge Phil. soc., vol. 52, 1956, p. 39-48. Zbl0070.04004MR17,597c
  5. [5] POLYA (G.). — Arithmetische Eigenschaften der Reiherentwicklungen rationaler Funktionen, Journal für die reine ungewandk Math., vol. 151, 1921, p. 1-21. JFM47.0276.02
  6. [6] REUTENAUER (C.). — Sur les éléments inversibles de l'algèbre de Hadamard des séries rationnelles, Bull. soc. Math. France., vol. 110, 1982, p. 225-232. Zbl0517.13010MR84f:16001
  7. [7] SZEMEREDI (E.). — On sets of integers containing no k elements in arithmetic progression, Acta Math., vol. 27, 1975, p. 199-245. Zbl0303.10056MR51 #5547
  8. [8] VAN DER POORTEN (A. J.). — Additive relations in number fields, Séminaire de théorie des nombres de Paris, 1982-1983, p. 259-266. Progress in Math., 1984, Birkhaüser-Boston. Zbl0562.10015

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.