An infinite dimensional Hodge-Tate theory

Shankar Sen

Bulletin de la Société Mathématique de France (1993)

  • Volume: 121, Issue: 1, page 13-34
  • ISSN: 0037-9484

How to cite

top

Sen, Shankar. "An infinite dimensional Hodge-Tate theory." Bulletin de la Société Mathématique de France 121.1 (1993): 13-34. <http://eudml.org/doc/87659>.

@article{Sen1993,
author = {Sen, Shankar},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Galois representation; -adic field; absolute Galois group; generalized Hodge-Tate decomposition; canonical operator; Banach algebra},
language = {eng},
number = {1},
pages = {13-34},
publisher = {Société mathématique de France},
title = {An infinite dimensional Hodge-Tate theory},
url = {http://eudml.org/doc/87659},
volume = {121},
year = {1993},
}

TY - JOUR
AU - Sen, Shankar
TI - An infinite dimensional Hodge-Tate theory
JO - Bulletin de la Société Mathématique de France
PY - 1993
PB - Société mathématique de France
VL - 121
IS - 1
SP - 13
EP - 34
LA - eng
KW - Galois representation; -adic field; absolute Galois group; generalized Hodge-Tate decomposition; canonical operator; Banach algebra
UR - http://eudml.org/doc/87659
ER -

References

top
  1. [1] BOURBAKI (N.). — Commutative Algebra. — Hermann, Paris, 1972. MR50 #12997
  2. [2] BOURBAKI (N.). — Topological Vector Spaces, Chap. 1-5. — Springer-Verlag, Berlin, 1987. Zbl0622.46001MR88g:46002
  3. [3] CARTAN (H.) and EILENBERG (S.). — Homological Algebra. — Princeton, 1956. Zbl0075.24305MR17,1040e
  4. [4] MAZUR (B.) and WILES (A.). — On p-adic analytic families of Galois representations, Compos. Math., t. 59, 1986, p. 231-264. Zbl0654.12008MR88e:11048
  5. [5] MAZUR (B.). — Deforming Galois representations in Galois Groups over Q, Proceedings of the March 1987 MSRI Worshop, Y. Ihara, K. Ribet and J.-P. Serre, eds., Springer-Verlag, 1989, p. 385-437. Zbl0714.11076
  6. [6] MAZUR (B.). — Two-dimensional p-adic Galois representations unramified away from p, Compos. Math., t. 74, 1990, p. 115-133. Zbl0773.11036MR91g:11056
  7. [7] SEN (S.). — Continuous cohomology and p-adic Galois representations, Invent. Math., t. 62, 1980, p. 89-116. Zbl0463.12005MR82e:12018
  8. [8] SEN (S.). — The analytic variation of p-adic Hodge structure, Ann. of Math., t. 127, 1988, p. 647-661. Zbl0662.12018MR90b:11062
  9. [9] SERRE (J.-P.). — Groupes algébriques associés aux modules de Hodge-Tate, in Journées de Géométrie Algébrique de Rennes, Astérisque, t. 65, 1979, p. 155-187. Zbl0446.20028MR81j:14027
  10. [10] TATE (J.T.). — p-divisible groups, Proc. Conf. Local Fields, Springer-Verlag, Heidelberg 1967, p. 158-183. Zbl0157.27601MR38 #155

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.