An infinite dimensional Hodge-Tate theory

Shankar Sen

Bulletin de la Société Mathématique de France (1993)

  • Volume: 121, Issue: 1, page 13-34
  • ISSN: 0037-9484

How to cite

top

Sen, Shankar. "An infinite dimensional Hodge-Tate theory." Bulletin de la Société Mathématique de France 121.1 (1993): 13-34. <http://eudml.org/doc/87659>.

@article{Sen1993,
author = {Sen, Shankar},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Galois representation; -adic field; absolute Galois group; generalized Hodge-Tate decomposition; canonical operator; Banach algebra},
language = {eng},
number = {1},
pages = {13-34},
publisher = {Société mathématique de France},
title = {An infinite dimensional Hodge-Tate theory},
url = {http://eudml.org/doc/87659},
volume = {121},
year = {1993},
}

TY - JOUR
AU - Sen, Shankar
TI - An infinite dimensional Hodge-Tate theory
JO - Bulletin de la Société Mathématique de France
PY - 1993
PB - Société mathématique de France
VL - 121
IS - 1
SP - 13
EP - 34
LA - eng
KW - Galois representation; -adic field; absolute Galois group; generalized Hodge-Tate decomposition; canonical operator; Banach algebra
UR - http://eudml.org/doc/87659
ER -

References

top
  1. [1] BOURBAKI (N.). — Commutative Algebra. — Hermann, Paris, 1972. MR50 #12997
  2. [2] BOURBAKI (N.). — Topological Vector Spaces, Chap. 1-5. — Springer-Verlag, Berlin, 1987. Zbl0622.46001MR88g:46002
  3. [3] CARTAN (H.) and EILENBERG (S.). — Homological Algebra. — Princeton, 1956. Zbl0075.24305MR17,1040e
  4. [4] MAZUR (B.) and WILES (A.). — On p-adic analytic families of Galois representations, Compos. Math., t. 59, 1986, p. 231-264. Zbl0654.12008MR88e:11048
  5. [5] MAZUR (B.). — Deforming Galois representations in Galois Groups over Q, Proceedings of the March 1987 MSRI Worshop, Y. Ihara, K. Ribet and J.-P. Serre, eds., Springer-Verlag, 1989, p. 385-437. Zbl0714.11076
  6. [6] MAZUR (B.). — Two-dimensional p-adic Galois representations unramified away from p, Compos. Math., t. 74, 1990, p. 115-133. Zbl0773.11036MR91g:11056
  7. [7] SEN (S.). — Continuous cohomology and p-adic Galois representations, Invent. Math., t. 62, 1980, p. 89-116. Zbl0463.12005MR82e:12018
  8. [8] SEN (S.). — The analytic variation of p-adic Hodge structure, Ann. of Math., t. 127, 1988, p. 647-661. Zbl0662.12018MR90b:11062
  9. [9] SERRE (J.-P.). — Groupes algébriques associés aux modules de Hodge-Tate, in Journées de Géométrie Algébrique de Rennes, Astérisque, t. 65, 1979, p. 155-187. Zbl0446.20028MR81j:14027
  10. [10] TATE (J.T.). — p-divisible groups, Proc. Conf. Local Fields, Springer-Verlag, Heidelberg 1967, p. 158-183. Zbl0157.27601MR38 #155

NotesEmbed ?

top

You must be logged in to post comments.