Formes non tempérées pour U 3 et conjectures de Bloch–Kato

Joël Bellaïche; Gaëtan Chenevier

Annales scientifiques de l'École Normale Supérieure (2004)

  • Volume: 37, Issue: 4, page 611-662
  • ISSN: 0012-9593

How to cite

top

Bellaïche, Joël, and Chenevier, Gaëtan. "Formes non tempérées pour $U\left(3\right)$ et conjectures de Bloch–Kato." Annales scientifiques de l'École Normale Supérieure 37.4 (2004): 611-662. <http://eudml.org/doc/82641>.

@article{Bellaïche2004,
author = {Bellaïche, Joël, Chenevier, Gaëtan},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {fre},
number = {4},
pages = {611-662},
publisher = {Elsevier},
title = {Formes non tempérées pour $U\left(3\right)$ et conjectures de Bloch–Kato},
url = {http://eudml.org/doc/82641},
volume = {37},
year = {2004},
}

TY - JOUR
AU - Bellaïche, Joël
AU - Chenevier, Gaëtan
TI - Formes non tempérées pour $U\left(3\right)$ et conjectures de Bloch–Kato
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2004
PB - Elsevier
VL - 37
IS - 4
SP - 611
EP - 662
LA - fre
UR - http://eudml.org/doc/82641
ER -

References

top
  1. [1] Arthur J., Clozel L., Simple Algebras, Base Change and the Advanced Theory of the Trace Formula, Ann. of Math. Stud., vol. 120, Princeton University Press, 1989. Zbl0682.10022MR1007299
  2. [2] Artin E., Tate J., Class Field Theory, Benjamin, 1968. Zbl0176.33504MR223335
  3. [3] Bellaïche J., Congruences endoscopiques et représentations galoisiennes, Thèse de l'université Paris 11, janvier 2002. 
  4. [4] Bellaïche J., À propos d'un lemme de Ribet, Rend. Sem. Univ. Padova109 (2003) 47-62. Zbl1048.20032MR1997986
  5. [5] Bellaïche J., Graftieaux P., Représentations sur un anneau de valuation discrète complet, Math. Ann., à paraître. Zbl1178.20040MR2207872
  6. [6] Bellaïche J., Graftieaux P., Augmentation du niveau pour U 3 , Preprint de l’université de Nice. MR2214894
  7. [7] Bernstein I.N., Zelevinsky A.V., Induced representations of reductive p-adic groups I, Ann. Sci. École Norm. Sup. (4)10 (1977) 441-472. Zbl0412.22015MR579172
  8. [8] Blasco L., Description du dual admissible de U 2 , 1 F par la théorie des types de C. Bushnell et P. Kutzko, Manuscripta Math.107 (2) (2002) 151-186. Zbl1108.22011MR1894738
  9. [9] Blasius D., Rogawski J., Tate class and arithmetic quotient of two-ball, in: Langlands R., Ramakhrisnan D. (Eds.), The Zeta Functions of Picard Modular Surfaces, Publications C.R.M., Montréal, 1992, pp. 421-443. Zbl0828.14012MR1155236
  10. [10] Blasius D., Rogawski J., Zeta functions of Shimura varieties, in: Motives, in: Proc. Sympos. Pure Math., vol. 55. Zbl0827.11033MR1265563
  11. [11] Blasius D., Rogawski J., Motives for Hilbert modular forms, Invent. Math.114 (1993) 55-87. Zbl0829.11028MR1235020
  12. [12] Borel A., Some finiteness properties of adele groups over number fields, IHÉS Publ. Math.16 (1963) 5-30. Zbl0135.08902MR202718
  13. [13] Borel A., Admissible representations of a semi-simple group over a local field with vectors fixed under an Iwahori subgroup, Invent. Math.35 (1976) 233-259. Zbl0334.22012MR444849
  14. [14] Borel A., Casselman W., Automorphic forms, representations, and L-functions, in: Proc. Sympos. Pure Math., vol. 33, 1977, Corvallis. Zbl0412.10017
  15. [15] Bosch S., Güntzer U., Remmert R., Non Archimedian Analysis, in: Grundlehren der mathematischen Wissenschaften, vol. 261, Springer-Verlag. Zbl0539.14017
  16. [16] Bushnell C., Smooth representations of p-adic group, ICM 1998, pp. 770–779. Zbl0856.22021MR1403977
  17. [17] Bushnell C., Kutzko P., Smooth representations of reductive p-adic groups: structure theory via types, Proc. London Math. Soc. (3)77 (1997) 582-634. Zbl0911.22014MR1643417
  18. [18] Bushnell C., Kutzko P., Semi-simple types, Compositio Math.119 (1999) 53-117. Zbl0933.22027
  19. [19] Buzzard K., Eigenvarieties, 2002, en préparation. 
  20. [20] Cartier P., Representations of p-adic groups: a survey, in: Proc. Sympos. Pure Math., vol. 33, 1977, pp. 111-155, Part I. Zbl0421.22010MR546593
  21. [21] Casselman W., The unramified principal series of p-adic groups. I. The spherical function, Compositio Math.40 (3) (1980) 387-406. Zbl0472.22004MR571057
  22. [22] Chenevier G., Familles p-adiques de formes automorphes pour G L n , J. Reine Angew. Math.570 (2004) 143-217. Zbl1093.11036MR2075765
  23. [23] Chenevier G., Familles p-adiques de formes automorphes et applications aux conjectures de Bloch–Kato, Thèse de l'université Paris 7, 2003. 
  24. [24] Choucroun F., Analyse harmonique des groupes d'automorphismes d'arbres de Bruhat–Tits, Mém. Soc. Math. France (N.S.) (58) (1994) 170. Zbl0840.43019MR1294542
  25. [25] Clozel L., Représentations galoisiennes associées aux représentations automorphes autoduales de G L n , IHÉS Publ. Math.73 (1991) 97-145. Zbl0739.11020MR1114211
  26. [26] Clozel L., Labesse J.-P., Changement de base pour les représentations cohomologiques de certains groupes unitaires, in: Astérisque, vol. 257, SMF, 1998, Appendice A. 
  27. [27] Coleman R., P-adic Banach spaces & families of modular forms, Invent. Math.127 (1997) 417-479. Zbl0918.11026MR1431135
  28. [28] Curtis C., Reiner I., Representation Theory of Finite Groups and Associative Algebras, Wiley, 1962. Zbl0131.25601MR1013113
  29. [29] Faltings G., Cristalline cohomology and p-adic Galois representations, in: Algebraic Analysis and Number Theory, JAMI Conference, 1988, pp. 25-90. Zbl0805.14008MR1463696
  30. [30] Fontaine J.-M., Le corps des périodes p-adiques, in: Périodes p-adiques, Astérisque, vol. 223, Société mathématique de France, 1994, pp. 59-111, exposé 2. Zbl0940.14012MR1293971
  31. [31] Fontaine J.-M., Représentations p-adiques semi-stables, in: Périodes p-adiques, Astérisque, vol. 223, Société mathématique de France, 1994, pp. 113-184, exposé 3. Zbl0865.14009MR1293972
  32. [32] Fontaine J.-M., Perrin-Riou B., Autour des conjectures de Bloch–Kato: cohomologie galoisienne et valeurs de fonctions L, in: Motives, Proc. Sympos. Pure Math., vol. 55, 1994, pp. 599-706, part 1. Zbl0821.14013MR1265546
  33. [33] Gordon B.B., Canonical models of Picard modular surfaces, in: Langlands R., Ramakhrisnan D. (Eds.), The Zeta Functions of Picard Modular Surfaces, Publications C.R.M., Montréal, 1992, pp. 1-27. Zbl0756.14011MR1155224
  34. [34] Harris M., On the local Langlands correspondence, in: Proceedings ICM 2002, vol. 2, 2002, pp. 583-597. Zbl1151.11351MR1957067
  35. [35] Harris M., Taylor R., The Geometry and Cohomology of Some Simple Shimura Varieties, Ann. Math. Stud., vol. 151, 2001. Zbl1036.11027MR1876802
  36. [36] Humphreys J.E., Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics, vol. 29. Zbl0768.20016
  37. [37] Katz N., Messing W., Some consequences of the Riemann Hypothesis for varieties over finite fields, Invent. Math.23 (1974) 73-77. Zbl0275.14011MR332791
  38. [38] Keys D., Principal series representations of special unitary groups over local fields, Compositio Math.51 (1) (1984) 115-130. Zbl0547.22009MR734788
  39. [39] Kisin M., Overconvergent modular forms and the Fontaine–Mazur conjecture, Invent. Math.153 (2003) 363-454. Zbl1045.11029MR1992017
  40. [40] Kottwitz R., Points on some Shimura varieties over finite fields, J. Amer. Math. Soc.5 (2) (1992). Zbl0796.14014MR1124982
  41. [41] Labesse J.-P., Cohomologie, stabilisation et changement de base, Astérisque, vol. 257, SMF, 1998. Zbl1024.11034MR1695940
  42. [42] Langlands R., Ramakhrisnan D. (Eds.), The Zeta Functions of Picard Modular Surfaces, Publications C.R.M., Montréal, 1992. Zbl0752.00024MR1155223
  43. [43] Matsumura H., Commutative ring theory, Cambridge Studies in Adv. Math., vol. 8, 1980. Zbl0603.13001
  44. [44] Mazur B., The theme of p-adic variation, in: Arnold V., Atiyah M., Lax P., Mazur B. (Eds.), Math.: Frontiers and Perspectives, AMS, 2000. Zbl0959.14008MR1754790
  45. [45] Motives, Proc. Sympos. Pure Math., vol. 55. 
  46. [46] Périodes p-adiques, Astérisque, vol. 223, Société mathématique de France, 1994. Zbl0802.00019MR1293969
  47. [47] Perrin-Riou B., Représentations p-adiques ordinaires, in: Périodes p-adiques, Astérisque, vol. 223, Société mathématique de France, 1994, pp. 209-220, exposé 4. Zbl1043.11532MR1293973
  48. [48] Ribet K., A modular construction of unramified extensions of Q ζ p , Invent. Math.34 (3) (1976) 151-162. Zbl0338.12003MR419403
  49. [49] Rogawski J., Analytic expression for the number of points mod p, in: Langlands R., Ramakhrisnan D. (Eds.), The Zeta Functions of Picard Modular Surfaces, Publications C.R.M., Montréal, 1992, pp. 65-109. Zbl0821.14015MR1155227
  50. [50] Rogawski J., The multiplicity formula for A-packets, in: Langlands R., Ramakhrisnan D. (Eds.), The Zeta Functions of Picard Modular Surfaces, Publications C.R.M., Montréal, 1992, pp. 395-419. Zbl0823.11027MR1155235
  51. [51] Rogawski J., On modules over the Hecke algebra of a p-adic group, Invent. Math.79 (1985) 443-465. Zbl0579.20037MR782228
  52. [52] Rogawski J., Automorphic Representations of Unitary Groups in Three Variables, Ann. of Math. Stud., vol. 123, Princeton University Press, 1990. Zbl0724.11031MR1081540
  53. [53] Rouquier R., Caractérisations des caractères et pseudo-caractères, J. Algebra180 (1996) 571-586. Zbl0857.16013MR1378546
  54. [54] Rubin K., The “main conjectures” of Iwasawa theory for imaginary quadratic fields, Invent. Math.103 (1) (1991) 25-68. Zbl0737.11030
  55. [55] Rubin K., Euler systems, Ann. of Math. Stud.147 (2000). Zbl0977.11001MR1749177
  56. [56] Serre J.-P., Endomorphismes complètement continus des espaces de Banach p-adiques, IHÉS Publ. Math.12 (1962) 69-85. Zbl0104.33601MR144186
  57. [57] Sen S., Continuous cohomology and p-adic Galois representations, Invent. Math.62 (1980) 89-116. Zbl0463.12005MR595584
  58. [58] Sen S., An infinite dimensional Hodge–Tate theory, Bull. Soc. Math. France121 (1993) 13-34. Zbl0786.11067MR1207243
  59. [59] Grothendieck A., Artin M., Verdier J.-L., Théorie des topos et cohomologie étale des schémas, Séminaire de géométrie algébrique IV, exposé XVI. Zbl0234.00007
  60. [60] Skinner C., Urban E., Sur les déformations p-adiques des formes de Saito–Kurokawa, C. R. Acad. Sci. Paris Sér. I335 (2002) 581-586. Zbl1024.11030MR1941298
  61. [61] Tate J., Number theoretic background, in: Automorphic Forms, Representations and L-Functions, Part 2, Proc. Sympos. Pure Math., vol. 33, 1977, pp. 3-26. Zbl0422.12007MR546607
  62. [62] Taylor R., Galois representations attached to Siegel modular forms of low weight, Duke Math. J.63 (1991) 281-332. Zbl0810.11033MR1115109
  63. [63] Tits J., Reductive groups over local fields, Part I, in: Proc. Sympos. Pure Math., vol. 33, 1977, pp. 29-69. Zbl0415.20035MR546588
  64. [64] Zelevinsky A.V., Induced representations of reductive p-adic groups II. On irreducible representations of G L n , Ann. Sci. École Norm. Sup. (4)13 (1980) 165-210. Zbl0441.22014MR584084

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.