Control theorems of p -nearly ordinary cohomology groups for SL ( n )

Haruzo Hida

Bulletin de la Société Mathématique de France (1995)

  • Volume: 123, Issue: 3, page 425-475
  • ISSN: 0037-9484

How to cite

top

Hida, Haruzo. "Control theorems of $p$-nearly ordinary cohomology groups for $\text{SL} (n)$." Bulletin de la Société Mathématique de France 123.3 (1995): 425-475. <http://eudml.org/doc/87724>.

@article{Hida1995,
author = {Hida, Haruzo},
journal = {Bulletin de la Société Mathématique de France},
keywords = {control theorems; Borel subgroups; independence of weight; -adic nearly ordinary cohomology groups; -adic cohomological modular forms; -adic nearly ordinary Hecke algebras},
language = {eng},
number = {3},
pages = {425-475},
publisher = {Société mathématique de France},
title = {Control theorems of $p$-nearly ordinary cohomology groups for $\text\{SL\} (n)$},
url = {http://eudml.org/doc/87724},
volume = {123},
year = {1995},
}

TY - JOUR
AU - Hida, Haruzo
TI - Control theorems of $p$-nearly ordinary cohomology groups for $\text{SL} (n)$
JO - Bulletin de la Société Mathématique de France
PY - 1995
PB - Société mathématique de France
VL - 123
IS - 3
SP - 425
EP - 475
LA - eng
KW - control theorems; Borel subgroups; independence of weight; -adic nearly ordinary cohomology groups; -adic cohomological modular forms; -adic nearly ordinary Hecke algebras
UR - http://eudml.org/doc/87724
ER -

References

top
  1. [AC] ARTHUR (J.) and CLOZEL (L.). — Simple algebras, base change, and the advanced theory of the trace formula, Ann. of Math. Studies, 120, Princeton University Press, 1989. Zbl0682.10022MR90m:22041
  2. [B] BOREL (A.). — Regularization theorems in Lie algebra cohomology. Applications, Duke Math. J., t. 50, 1983, p. 605-623. Zbl0528.22010MR84h:17009
  3. [BS] BOREL (A.) and SERRE (J.-P.). — Corners and arithmetic groups, Comment. Math. Helv., t. 48, 1974, p. 436-491. Zbl0274.22011MR52 #8337
  4. [BW] BOREL (A.) and WALLACH (N.). — Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, Ann. of Math. Studies 94, Princeton University Press, Princeton, 1980. Zbl0443.22010MR83c:22018
  5. [C] CLOZEL (L.). — Motifs et formes automorphes : applications du principe de fonctorialité, Perspective Math., t. 10, 1990, p. 77-159. Zbl0705.11029MR91k:11042
  6. [C1] CLOZEL (L.). — Représentations galoisienne associées aux représentations automorphes autoduales de GL(n), Publ. I.H.E.S., t. 73, 1991, p. 97-145. Zbl0739.11020MR92i:11055
  7. [C2] CLOZEL (L.). — On the cohomology of Kottwitz's arithmetic varieties, Duke Math. J., t. 72, 1993, p. 757-795. Zbl0974.11019MR95b:11055
  8. [DKV] DELIGNE (P.), KAZHDAN (D.) and VIGNÉRAS (M.-F.). — Représentations des algèbres centrales simples p-adiques, in "Représentations des groupes réductifs sur un corps local", Hermann, Paris, 1984, p. 33-117. Zbl0583.22009MR86h:11044
  9. [H1] HIDA (H.). — On p-adic Hecke algebras for GL2 over totally real fields, Ann. of Math., t. 128, 1988, p. 295-384. Zbl0658.10034MR89m:11046
  10. [H2] HIDA (H.). — p-Ordinary cohomology groups for SL(2) over number fields, Duke Math. J., t. 69, 1993, p. 259-314. Zbl0941.11024MR94g:11031
  11. [H3] HIDA (H.). — Modular p-adic L-functions and p-adic Hecke algebras, in Japanese, Sugaku, t. 44, n° 4, 1992, p. 289-305. (English transl. : Amer. Math. Soc. Transl. 160 (2), 1994, p. 125-154.). Zbl0811.11040
  12. [H4] HIDA (H.). — p-Adic ordinary Hecke algebras for GL(2), Ann. Inst. Fourier 44, 1994, p. 1289-1323. Zbl0819.11017MR95k:11065
  13. [J] JANTZEN (J.C.). — Representations of algebraic groups, Pure and Applied Math. 131, Academic Press, 1987. Zbl0654.20039MR89c:20001
  14. [MM] MATSUSHIMA (Y.) and MURAKAMI (S.). — On vector bundle valued harmonic forms and automorphic forms on Symmetric Riemannian manifolds, Ann. of Math., t. 78, 1963, p. 365-416. Zbl0125.10702MR27 #2997
  15. [MW] MOEGLIN (C.) and WALDSPURGER (J.-L.). — Le spectre résiduel de GL(n), Ann. Scient. École Norm. Sup., 4e série, t. 22, 1989, p. 605-674. Zbl0696.10023MR91b:22028
  16. [R] ROGAWSKI (J.D.). — Representations of GL(n) and division algebras over a p-adic fields, Duke Math. J., t. 50, 1983, p. 161-196. Zbl0523.22015MR84j:12018
  17. [W] WILSON (B.). — p-Adic Hecke algebra, Thesis, UCLA, 1993. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.