Valeurs propres et résonances au voisinage d'un seuil

Alain Grigis; Frédéric Klopp

Bulletin de la Société Mathématique de France (1996)

  • Volume: 124, Issue: 3, page 477-501
  • ISSN: 0037-9484

How to cite

top

Grigis, Alain, and Klopp, Frédéric. "Valeurs propres et résonances au voisinage d'un seuil." Bulletin de la Société Mathématique de France 124.3 (1996): 477-501. <http://eudml.org/doc/87747>.

@article{Grigis1996,
author = {Grigis, Alain, Klopp, Frédéric},
journal = {Bulletin de la Société Mathématique de France},
keywords = {resolvant; periodic potential},
language = {fre},
number = {3},
pages = {477-501},
publisher = {Société mathématique de France},
title = {Valeurs propres et résonances au voisinage d'un seuil},
url = {http://eudml.org/doc/87747},
volume = {124},
year = {1996},
}

TY - JOUR
AU - Grigis, Alain
AU - Klopp, Frédéric
TI - Valeurs propres et résonances au voisinage d'un seuil
JO - Bulletin de la Société Mathématique de France
PY - 1996
PB - Société mathématique de France
VL - 124
IS - 3
SP - 477
EP - 501
LA - fre
KW - resolvant; periodic potential
UR - http://eudml.org/doc/87747
ER -

References

top
  1. [ADH] ALAMA (S.), DEIFT (P.A.) and HEMPEL (R.). — Eigenvalue branches of the Schrödinger operator H — ⋋W in a gap of σ(H), Comm. Math. Phys., t. 121, 1989, p. 291-321. Zbl0676.47032MR90e:35046
  2. [Ba-Sk] BALSLEV (E.) and SKIBSTEDT (E.). — Resonance theory of two-body Schrödinger operators, Ann. Inst. Henri Poincaré, sér. Phys. Théor., t. 51, 1989, p. 129-154. Zbl0714.35063
  3. [Bi] BIRMAN (M.Sh.). — On the discrete spectrum in the gaps for a perturbed periodic second-order operator, Funct. Anal. Appl., t. 25, 4, 1991, p. 158-161. Zbl0733.35083
  4. [CFKS] CYCON (H.L.), FROESE (R.G.), KIRSCH (W.) and SIMON (B.). — Schrödinger operators. — Springer, Berlin Heidelberg New York, 1987. 
  5. [Gé1] GÉRARD (C.). — Resonance theory in atom surface scattering, Comm. Math. Phys., t. 126, 1989, p. 263-290. Zbl0682.47003MR91a:81222
  6. [Gé2] GÉRARD (C.). — Resonance theory for periodic Schrödinger operators, Bull. Soc. Math. France, t. 118, 1990, p. 27-54. Zbl0723.35059MR91h:35231
  7. [Ho] HOWLAND (J.). — The Livsic matrix in perturbation theory, J. Math. Anal. Apppl., t. 50, 1975, p. 415-437. Zbl0367.47010MR51 #11153
  8. [Kl] KLOPP (F.). — Resonances for perturbations of a semi-classical periodic Schrödinger operator, to appear in Arkiv. Math.. Zbl0818.35096
  9. [Or] ORTH (A.). — Quantum mechanical resonance and limiting absorption : the many-body case, Comm. Math. Phys., t. 126, 1990, p. 559-573. Zbl0694.35130MR91i:47067
  10. [Rai] RAIKOV (G.D.). — Eigenvalue asymptotics for the Schrödinger operator with perturbed periodic potential, Invent. Math., t. 110, 1992, p. 75-93. Zbl0801.35095MR93k:35200
  11. [ReSi] REED (M.) and SIMON (B.). — Methods of modern mathematical physics, vol. IV : analysis of operators. — Academic Press, New York, 1978. Zbl0401.47001
  12. [Sob] SOBOLEV (A.V.). — Weyl asymptotics for the discrete spectrum of the perturbed Hill operator, Adv. Sov. Math., Providence RI, t. 7, 1991, p. 159-178. Zbl0752.34046MR95i:34158

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.