Resonance theory for periodic Schrödinger operators

Christian Gérard

Bulletin de la Société Mathématique de France (1990)

  • Volume: 118, Issue: 1, page 27-54
  • ISSN: 0037-9484

How to cite

top

Gérard, Christian. "Resonance theory for periodic Schrödinger operators." Bulletin de la Société Mathématique de France 118.1 (1990): 27-54. <http://eudml.org/doc/87594>.

@article{Gérard1990,
author = {Gérard, Christian},
journal = {Bulletin de la Société Mathématique de France},
keywords = {resolvent; periodic Schrödinger operator; Van Hove singularities},
language = {eng},
number = {1},
pages = {27-54},
publisher = {Société mathématique de France},
title = {Resonance theory for periodic Schrödinger operators},
url = {http://eudml.org/doc/87594},
volume = {118},
year = {1990},
}

TY - JOUR
AU - Gérard, Christian
TI - Resonance theory for periodic Schrödinger operators
JO - Bulletin de la Société Mathématique de France
PY - 1990
PB - Société mathématique de France
VL - 118
IS - 1
SP - 27
EP - 54
LA - eng
KW - resolvent; periodic Schrödinger operator; Van Hove singularities
UR - http://eudml.org/doc/87594
ER -

References

top
  1. [B-C] BALSLEV (E.) and COMBES (J.M.). — Spectral Theory of many-body Schrödinger operators with dilation analytic interactions, Comm. Math. Phys., t. 22, 1971, p. 280-294. Zbl0219.47005MR49 #10288
  2. [B] BENTOSELA (F.). — Scattering for impurities in a crystal, Comm. Math. Phys., t. 46, 1976, p. 153-166. MR52 #14690
  3. [B-P] BROS (J.) and PESENTI (D.). — Fredholm resolvents of meromorphic kernels with complex parameters : a Landau singularity and the associated equations of type U in a non holonomic case, J. Math. Pures Appl. (9), t. 62, 1983, p. 215-252. Zbl0531.35067MR86h:81045
  4. [C] CALLAWAY (J.). — Quantum theory of the solid state. — Academic Press, New York and London, 1974. 
  5. [F-F-L-P] FOTIADI (D.), FROISSART (M.), LASCOUX (J.) and PHAM (F.). — Applications of an isotopy theorem, Topology, t. 4, 1965, p. 159-191. Zbl0173.09301MR35 #4952
  6. [F-K] FUKUDA (T.) and KOBAYASHI (T.). — A local isotopy lemma, Tokyo J. Math., t. 5(1), 1982, p. 31-36. Zbl0514.58034MR84c:58007
  7. [Ge] GERARD (C.). — Resonance Theory in atom-surface scattering, to appear in Comm. Math. Phys. Zbl0682.47003
  8. [Hi1] HIRONAKA (H.). — Stratification and flatness. — Oslo, Proceedings of the Nordic Summer School, 1976. Zbl0424.32004
  9. [Hi2] HIRONAKA (H.). — Bimeromorphic smoothing of complex analytic space, Acta Math. Vietnam., t. 2 n° 2, 1977, p. 1-35. Zbl0407.32006MR58 #17198
  10. [K] KOBAYASHI. — On the singularities of the solution to the Cauchy problem with singular data in the complex domain, Math. Ann., t. 269, 1984, p. 217-234. Zbl0571.35013MR86e:35004
  11. [L] LERAY (J.). — Le calcul différentiel et intégral sur une variété analytique complexe, Bull. Soc. Math. France, t. 87, 1959, p. 81-180. Zbl0199.41203MR23 #A3281
  12. [Me] MERCIER (D.J.). — Théorèmes de régularité de type Nilsson, Thèse de doctorat de l'Université de Nice, 1984. 
  13. [Mi] MILNOR (J.). — Singular points of complex hypersurfaces. — Princeton Univ. Press, 1968. Zbl0184.48405MR39 #969
  14. [P] PHAM (F.). — Introduction à l'étude topologique des singularités de Landau. Mémorial des sciences mathématiques n° 164. — Gauthier-Villars Paris, 1967. Zbl0157.27503MR37 #4837
  15. [Re-Si] REED (M.) and SIMON (B.). — Methods of Modern Mathematical Physics, vol. III and IV. — Academic Press London, 1978. 
  16. [S] SIKORSKI (R.). — The determinant theory in Banach spaces, Colloq. Math., t. 8, 1961, p. 141-198. Zbl0103.33202MR25 #1454
  17. [Si] SIMON (B.). — Trace ideals and their applications, [London Math. Soc. Lect. Notes n° 35], Cambridge Univ. Press, 1979. Zbl0423.47001MR80k:47048
  18. [Sk] SKRIGANOV (M.M.). — Geometric and arithmetic methods in the spectral theory of multi-dimensional periodic operators, [Proceedings of Steklov Institute of Mathematics n° 2], 1987. Zbl0615.47004MR88g:47038
  19. [T] THOMAS (L.E.). — Time dependent approach to scattering from impurities in a crystal, Comm. Math. Phys., t. 33, 1973, p. 335-343. MR48 #13084
  20. [W] WILCOX (C.). — Theory of Bloch waves, J. Analyse Math., t. 33, 1978, p. 146-167. Zbl0408.35067MR82b:82068

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.