Transversely affine and transversely projective holomorphic foliations

B. Azevedo Scárdua

Annales scientifiques de l'École Normale Supérieure (1997)

  • Volume: 30, Issue: 2, page 169-204
  • ISSN: 0012-9593

How to cite


Scárdua, B. Azevedo. "Transversely affine and transversely projective holomorphic foliations." Annales scientifiques de l'École Normale Supérieure 30.2 (1997): 169-204. <>.

author = {Scárdua, B. Azevedo},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {singular holomorphic foliations; complex manifold; logarithmic foliations; Riccati foliations; transversely projective foliations},
language = {eng},
number = {2},
pages = {169-204},
publisher = {Elsevier},
title = {Transversely affine and transversely projective holomorphic foliations},
url = {},
volume = {30},
year = {1997},

AU - Scárdua, B. Azevedo
TI - Transversely affine and transversely projective holomorphic foliations
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1997
PB - Elsevier
VL - 30
IS - 2
SP - 169
EP - 204
LA - eng
KW - singular holomorphic foliations; complex manifold; logarithmic foliations; Riccati foliations; transversely projective foliations
UR -
ER -


  1. [1] B. SEKE, Sur les structures transversalement affines des feuilletages de codimension (Ann. Inst. Fourier, Grenoble 30, Vol. 1, 1980, pp. 1-29). Zbl0417.57011MR82b:57023
  2. [2] C. ANDRADEPersistência de folheações definidas por formas logarítmicas ; Thesis, IMPA, 1990. 
  3. [3] C. ANDRADE, Deformations of holomorphic foliations ; preprint : CIMAT, Guanajuato, Mexico. 
  4. [4] C. CAMACHO, A. LINS NETO and P. SAD, Topological invariants and equidesingularization for holomorphic vector fields (J. of Diff. Geometry, Vol. 20, n° 1, 1984, pp. 143-174). Zbl0576.32020MR86d:58080
  5. [5] C. CAMACHO and P. SAD, Invariant varieties through singularities of holomorphic vector fields (Ann. of Math. Vol. 115, 1982, pp. 579-595). Zbl0503.32007MR83m:58062
  6. [6] C. CAMACHO, A. LINS NETO and P. SAD, Foliations with algebraic limit sets (Ann. of Math. Vol. 136, 1992, pp. 429-446). Zbl0769.57017MR93i:32035
  7. [7] C. CAMACHO and A. LINS NETO, The Topology of integrable differential forms near a singularity (Publ. Math. I.H.E.S., Vol. 55, 1982, pp. 5-35). Zbl0505.58026MR84g:58017
  8. [8] A. CAMPILLO, C. GALINDO, J. GARCIA and A. J. REGUERA, On proximity and intersection inequalities for foliations on algebraic surfaces ; preprint Univ. Valladolid, Spain. 
  9. [9] M. CARNICER, The Poincaré problem in the non-dicritical case (Ann. of Math. Vol. 140, 1994, pp. 289-294). Zbl0821.32026MR95k:32031
  10. [10] D. CERVEAU and A. LINS NETO, Holomorphic foliations in CP(2) having an invariant algebraic curve (Ann. Inst. Fourier, t. 41, 1991, Fasc. 4, pp. 883-903). Zbl0734.34007MR93b:32050
  11. [11] D. CERVEAU and A. LINS NETO, Codimension-one foliations in CP(n) n ≥ 3 with Kupka components (Astérisque Vol. 222, 1994, pp. 93-132). Zbl0823.32014MR96h:32045
  12. [12] D. CERVEAU and A. LINS NETO, Irreducible components of the space of holomorphic foliations of degree two in CP(n), n ≥ 3 ; preprint Univ. Rennes I, 1994 (to appear in Ann. of Math). Zbl0855.32015
  13. [13] D. CERVEAU and J.-F. MATTEI, Formes intégrables holomorphes singulières (Astérisque, Vol. 97, 1982). Zbl0545.32006MR86f:58006
  14. [14] D. CERVEAU and R. MOUSSU, Groupes d'automorphismes de (C, 0) et équations différentielles ydy + ... = 0 (Bull. Soc. Math. France, Vol. 116, 1988, pp. 459-488). Zbl0696.58011MR90m:58192
  15. [15] D. CERVEAU and P. SAD, Problèmes de modules pour les formes différentielles singulières dans le plan complexe (Com. Math. Helvetici Vol. 61, 1986, pp. 222-253). Zbl0604.58004MR88f:58124
  16. [16] E. GHYS, Feuilletages holomorphes de codimension un sur les espaces homogènes complexes ; preprint, ENS, Lyon, 1995. 
  17. [17] C. GODBILLON, Feuilletages : Études Geométriques I, Université Louis Pasteur, Mai, 1985. 
  18. [18] X. GÓMEZ-MONT and A. LINS NETO, Structural stability of foliations with a meromorphic first integral (Topology Vol. 30, 1991, pp. 315-334). Zbl0735.57014MR92j:32114
  19. [19] H. GRAUERT and R. REMMERT, Theory of Stein Spaces, Springer-Verlag. Zbl0379.32001
  20. [20] R. GUNNING and H. ROSSI, Analytic functions of several complex variables, Prentice Hall, Englewood Cliffs, NJ, 1965. Zbl0141.08601MR31 #4927
  21. [21] I. KUPKA, The singularities of integrable structurally stable Pfaffian forms (Proc. Nat. Acad. Sci. U.S.A., Vol. 52, 1964, pp. 1431-1432). Zbl0137.41404MR30 #3427
  22. [22] A. LINS NETO, Algebraic solutions of polynomial differential equations and foliations in dimension two (Lect. Notes in Math. n° 1345, pp. 192-231). Zbl0677.58036MR90c:58142
  23. [23] A. LINS NETO, Construction of singular holomorphic vector fields and foliations in dimension two (Journal of Diff. Geometry Vol. 26, 1987, pp. 1-31). Zbl0625.57012MR88f:32047
  24. [24] J. F. MATTEI and R. MOUSSU, Holonomie et intégrales premières (Ann. Ec. Norm. Sup. Vol. 13, 1980, pp. 469-523). Zbl0458.32005MR83b:58005
  25. [25] J. MARTINET and J.-P. RAMIS, Classification analytique des équations différentielles non lineaires resonnants du premier ordre (Ann. Sc. Ec. Norm. Sup., Vol. 16, 1983, pp. 571-621). Zbl0534.34011MR86k:34034
  26. [26] A. MEDEIROS, Structural stability of integrable differential forms, Geometry and Topology (M. do Carmo, J. Palis eds.), LNM, 1977, pp. 395-428). Zbl0363.58007MR56 #9561
  27. [27] B. AZEVEDO SCÁRDUA, Transversely affine and transversely projective foliations on complex projective spaces (Thesis, IMPA, 1994). Zbl0889.32031
  28. [28] A. SEIDENBERG, Reduction of singularities of the differential equation Ady = Bdx (Amer. J. of Math. Vol. 90, 1968, pp. 248-269). Zbl0159.33303MR36 #3762
  29. [29] E. SERNESI, Small deformations of global complete intersections (Bollettino della Unione Matematica Italiana, Vol. 12, 1975, pp. 138-146). Zbl0333.32019MR53 #454
  30. [30] Y. SIU, Techniques of Extension of Analytic Objects ; Marcel Dekker, N.Y., 1974. Zbl0294.32007MR50 #13600

Citations in EuDML Documents

  1. F. Cukierman, J. V. Pereira, I. Vainsencher, Stability of foliations induced by rational maps
  2. Frédéric Touzet, Sur les feuilletages holomorphes transversalement projectifs
  3. A. Lins Neto, P. Sad, B. Scárdua, On topological rigidity of projective foliations
  4. Gaël Cousin, Un exemple de feuilletage modulaire déduit d’une solution algébrique de l’équation de Painlevé VI
  5. Guy Casale, Feuilletages singuliers de codimension un, groupoïde de Galois et intégrales premières

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.