Entire functions on locally convex spaces and convolution operators

Mario C. Matos; Leopoldo Nachbin

Compositio Mathematica (1981)

  • Volume: 44, Issue: 1-3, page 145-181
  • ISSN: 0010-437X

How to cite

top

Matos, Mario C., and Nachbin, Leopoldo. "Entire functions on locally convex spaces and convolution operators." Compositio Mathematica 44.1-3 (1981): 145-181. <http://eudml.org/doc/89514>.

@article{Matos1981,
author = {Matos, Mario C., Nachbin, Leopoldo},
journal = {Compositio Mathematica},
keywords = {spaces of entire functions of Silva nuclear type; Silva nuclear bounded type; convolution operators; Borel transform},
language = {eng},
number = {1-3},
pages = {145-181},
publisher = {Sijthoff et Noordhoff International Publishers},
title = {Entire functions on locally convex spaces and convolution operators},
url = {http://eudml.org/doc/89514},
volume = {44},
year = {1981},
}

TY - JOUR
AU - Matos, Mario C.
AU - Nachbin, Leopoldo
TI - Entire functions on locally convex spaces and convolution operators
JO - Compositio Mathematica
PY - 1981
PB - Sijthoff et Noordhoff International Publishers
VL - 44
IS - 1-3
SP - 145
EP - 181
LA - eng
KW - spaces of entire functions of Silva nuclear type; Silva nuclear bounded type; convolution operators; Borel transform
UR - http://eudml.org/doc/89514
ER -

References

top
  1. [1] R. Aron: Holomorphy types for open subsets of a Banach space. Studia Math.45 (1973) 273-289. Zbl0226.46018MR341088
  2. [2] R. Aron: Tensor products of holomorphic functions, Nederl. Akad. Wetensch. Indag. Math.35 (76) (1973), Fasc. 3, 192-202. Zbl0261.46031MR346530
  3. [3] T. Abuabara: A version of the Paley-Wiener-Schwartz theorem in infinite dimensions. Advances in Holomorphy. (J.A. Barroso, editor), North-Holland Publishing Co., (1979) 1-29. Zbl0404.46024MR520652
  4. [4] V. Bargmann: On a Hilbert space of analytic functions and an associated integral transform, II. A family of related function spaces. Application to distribution theory. Comm. Pure Appl. Math., 20 (1967) 1-101. Zbl0149.09601MR201959
  5. [5] F.A. Berezin: The Method of second quantization, Nauka, Moscow, (1965). English transl., Pure and Appl. Physics, Vol. 24, Academic Press, New York, (1966). Zbl0151.44001MR202392
  6. [6] P. Berner: Convolution operators and surjective limits. Advances in Holomorphy (Editor J.A. Barroso) North-Holland Publishing Co. (1979), 93-102. Zbl0416.46031MR520656
  7. [7] M. Bianchini: Tipos de Silva-holomorfia, Transformadas de Borel e Operadores Diferenciais Parciais-Tese-Universidade Estadual deCampinas, (1978), Brasil. 
  8. [8] Ph J. Boland: Espaces pondérés de fonctions entières et de fonctions entières nucléaires sur un espace de Banach, C. R. Acad. Sci. Paris, Sér. A-B, 275 (1972) A-587-A-590. Zbl0243.46038MR407598
  9. [9] Ph. J. Boland: Some spaces of entire and nuclearly entire functions on a Banach space, Part I—J. Reine Angew. Math.270 (1974), 38-60.Part II— J. Reine Angew. Math.271 (1974), 8-27. Zbl0323.46043
  10. [10] Ph. J. Boland: Malgrange theorem for entire functions on nuclear spaces: Proc. on Infinite-Dimensional Holomorphy (Editors: T.L. Hayden & T.J. Suffridge), Lecture Notes in Math. Vol. 364, Springer-Verlag, (1974), 135-144. Zbl0282.46019MR420271
  11. [11] Ph. J. Boland: Holomorphic functions on DFN-spaces. Sém. Pierre Lelong 1973/74. Lecture Notes in Math., Vol. 474, Springer-Verlag (1975) 109-113. Zbl0314.46045MR394201
  12. [12] Ph. J. Boland: Holomorphic functions on nuclear spaces. Publicaciones del Departamento de Analisis Matematico. Universidad de Santiago de Compostela, Serie B, No. 16, (1976), Spain. MR493331
  13. [13] Ph. J. Boland: Some Spaces of Nuclearly Holomorphic Functions of Bounded Type, Atas 3a Quinzena de Análise Funcional e Equações Diferenciais Parciais, Vol. 2, (1971) 175-189. Sociedade Brasileira de Matemática, Brasil. 
  14. [14] Ph. J. Boland and S. Dineen: Convolution Operators on G-holomorphic functions in infinite dimensions. Trans. Amer. Math. Soc.190 (1974), 313-323. Zbl0247.46043MR407599
  15. [15] J.F. Colombeau: Holomorphy in locally convex spaces and operators on the Fock spaces. To appear in Seminaire Lelong 1977/78 and 78/79. Zbl0441.46037MR599017
  16. [16] J.F. Colombeau: Differentiable mappings on real nuclear Silva spaces and applications. To appear in Revue Roumaine de Math. Pures et Appliquées. Zbl0494.46043MR577187
  17. [17] J.F. Colombeau: A result of existence of holomorphic maps which admit a given asymptotic expansion. Advances in Holomorphy (Editor: J.A. Barroso), North-Holland Publishing Company (1979), 221-232. Zbl0446.46037MR520661
  18. [18] J.F. Colombeau and B. Perrot: Convolution equations in spaces of infinite dimensional entire functions of exponential and related types. To appear in the Trans. Amer. Math. Soc. Zbl0426.46015MR554328
  19. [19] J.F. Colombeau and B. Perrot: Théorèmes de noyaux analytiques en dimension infinie. C. R. Acad. Sci. Paris, t. 284 (1977), Série A, 759-762. Zbl0349.46042MR433207
  20. [20] J.F. Colombeau and B. Perrot: Transformation de Fourier Borel et noyaux en dimension infinie. C.R. Acad. Sci. Paris, t. 284 (1977), Série A, 963-966. Zbl0361.46035MR433208
  21. [21] J.F. Colombeau and B. Perrot: Infinite dimensional holomorphic "normal forms" of operators on the Fock spaces of Boson fields and an extension of the concept of Wick product. Advances in Holomorphy. (Editor: J.A. Barroso) North-Holland Publis. Co. (1979), 249-274. Zbl0479.46032MR520663
  22. [22] J.F. Colombeau and B. Perrot: Transformation de Fourier-Borel et réflexivité dans les espaces d'applications Silva-analytiques à valeurs vectorielles; applications. C. R. Acad. Sci. Paris, t. 285 (1977), Série, A, 19-21. Zbl0357.46051MR442680
  23. [23] J.F. Colombeau and B. Perrot: The Fourier-Borel transform in infinitely many dimensions and applications. To appear. Zbl0476.46045MR610829
  24. [24] J.F. Colombeau: Infinite dimensional C∞ mappings with a given sequence of derivatives at a given point. To appear in Journal of Math. Anal. and Appl. Zbl0433.46040
  25. [25] J.F. Colombeau, T.A.W. DwyerIII and B. Perrot: On the solvability of differential equations of infinite order in non-metrizable spaces. To appear. 
  26. [26] J.F. Colombeau and M.C. Matos: Convolution equations in spaces of infinite dimensional entire functions. To appear. Zbl0453.46033MR597996
  27. [27] J.F. Colombeau and M.C. Matos: On some spaces of entire functions defined on infinite dimensional spaces. To appear. Zbl0483.46018MR634762
  28. [28] J.F. Colombeau and B. Perrot: Reflexivity and kernels in infinite dimensional holomorphic. To appear in Portugaliae Mathematica. Zbl0441.46021MR597851
  29. [29] J.F. Colombeau and B. Perrot: The ∂ equation in DFN spaces. Journal of Mathematical Analysis and Applications. To appear. 
  30. [30] J.F. Colombeau and J. Mujica: Existence of holomorphic mappings with prescribed asymptotic expansions at a given set of points in infinite dimensions. To appear in Journal of Nonlinear Analysis Theory, Methods and Applications. Zbl0453.46034MR606696
  31. [31] S. Dineen: Holomorphic functions on a Banach space. Bull. Amer. Math. Soc.76 (1970), 883-886. Zbl0237.46027MR259578
  32. [32] S. Dineen: Holomorphic types on a Banach space. Studia Math.39 (1971), 241-288. Zbl0235.32013MR304705
  33. [33] T.A.W. Dwyer III.: Vector-valued convolution equations for the nuclear holomorphy type. Proc. Royal Irish Academy, Vol 76, sect A, (1976), 101-110. Zbl0328.46047MR487451
  34. [34] T.A.W. Dwyer III.: Convolution equations for vector-valued entire functions of nuclear bounded type. Trans Amer. Math. Soc.217 (1976), 105-119. Zbl0299.46036MR487450
  35. [35] T.A.W. Dwyer III.: Differential operators of infinite order in locally convex spaces. I. Rendiconti di Matematica (1), Vol. 10, Serie VI (1977), 149-179.II Rendiconti di Matimatica (2-3), Vol. 10. Serie VI (1977), 273-293. Zbl0377.46061MR482181
  36. [36] T.A.W. Dwyer III.: Holomorphic Fock representation and partial differential equations on countably Hilbert spaces. Bull. Amer. Math. Soc., 79, No. 5 (1975), 1045-1050. Zbl0271.35064MR320749
  37. [37] T.A.W. Dwyer III.: Partial differential equations in Fischer-Fock spaces for the Hilbert-Schmidt holomorphy type. Bull. Amer. Math. Soc.77 (1971), 725-730. Zbl0222.46019MR290103
  38. [38] T.A.W. Dwyer III.: Holomorphic representation of tempered distributions and weighted Fock spaces. Analyse Fonctionnelle et Applications (Éditeur: L. Nachbin), Actualités Scient. Indust.1367, Hermann (1975), 95-118. Zbl0327.46048MR402496
  39. [39] T.A.W. Dwyer III.: Partial differential equations in holomorphic Fock spaces. Functional Analyses and Applications (Editor: L. Nachbin). Lecture Notes in Math.Springer-Verlag, 384 (1974), 252-259. Zbl0308.46043MR404893
  40. [40] T.A.W. Dwyer III.: Dualité des espaces de fonctions entières en dimension infinie. C. R. Acad. Sci. Paris, Ser. A, 280 (1975), 1439-1442. Zbl0308.46042MR383077
  41. [41] T.A.W. Dwyer III.: Equations différentielles d'ordre infini dans des espaces localement convexes. C. R. Acad. Sci. Paris, 281 (1975), Ser. A, 163-166. Zbl0319.46032
  42. [42] T.A.W. Dwyer III.: Dualité des espaces de fonctions entières en dimension infinie. Ann. Inst. Fourier(Grenoble) 2 (No. 4) (1976), 151-195. Zbl0331.46039MR482192
  43. [43] T.A.W. Dwyer III.: Infinite Dimensional Analytic Systems. Proceedings of the 1977, IEEE Conference on Decision and Control (1977), 285-290. MR504200
  44. [44] T.A.W. Dwyer III.: Differential equations of infinite order in vector-valued holomorphic Fock spaces. Infinite Dimensional Holomorphy and Applications (Editor: M.C. Matos), North-Holland Publishing Co., Amsterdam (1977), 167-200. Zbl0441.46034MR482180
  45. [45] T.A.W. Dwyer III.: Fourier-Borel duality and bilinear realizations of control systems. Proceedings of the 1976. Ames (NASA). Conference on Geometric Methods in Control. Math. Sci. Press, 53 Jordan Rd., Brookline, Ma. (1977), 405-438. Zbl0372.93024MR479504
  46. [46] T.A.W. Dwyer III.: Analytic Evolution Equations in Banach spaces. Proceedings of the 1977, Dublin Conference on Vector Space Measures and Applications, Part II, (Editores: R.M. Aron & S. Dineen). Lecture Notes in Math.645, Springer-Verlag (1978). Zbl0386.35022MR502427
  47. [47] C.P. Gupta: On Malgrange theorem for nuclearly entire functions on a Banach space. Proc. Acad. Sci. AmsterdamA-73, Indag. Math. (1970), 356-358. Zbl0201.44605MR290104
  48. [48] C.P. Gupta: Convolution operators and holomorphic mappings on a Banach space. Séminare d'Analyse Moderne, No. 2, Université de Sherbrooke, Sherbrooke (1969). Zbl0243.47016
  49. [49] C.P. Gupta: Malgrange theorem for nuclearly entire functions of bounded type on a Banach space. Notas de Matemática, Vol. 37 (1968), Instituto de Mathemática Pura e Aplicada, Rio de Janeiro, Brasil. Zbl0182.45402MR632066
  50. [50] C.P. Gupta and L. Nachbin: Malgrange theorem for nuclearly entire functions on a Banach space. Preprint University of Rochester, Rochester, N.Y., (1968) U.S.A. 
  51. [51] M.C. Matos: Sur le théorème d'approximation et d'existence de Malgrange Gupta, C.R. Acad. Sci. Paris, 271 (1970), Ser. A, 1258-1259. Zbl0205.40902MR285888
  52. [52] M.C. Matos: Holomorphic mappings and domains of holomorphy. Monografias do Centro Brasileiro de Pesquisas Físicas, No. 27, Centro Brasileiro de Pesquisa Físicas, Rio de Janeiro (1970), Brasil. Zbl0233.32004
  53. [53] M.C. Matos: On Malgrange Theorem for nuclear holomorphic functions in open balls of a Banach space. Math. Z.162 (1978), 113-123. Zbl0402.46029MR632054
  54. [54] M.C. Matos: On convolution equations in a weak locally convex space. An. Acad. brasil. Cien.49. (1977), 529-531. Zbl0377.47035MR493335
  55. [55] M.C. Matos: Convolution operators in spaces of uniform nuclear entire functions. To appear. MR687994
  56. [56] M.C. Matos and L. Nachbin: Silva-holomorphy types. Advances in Functional Analysis, Holomorphy and Approximation Theory (Editor: S. Machado). Lecture Notes in Math., Springer-Verlag. To appear. Zbl0484.46045MR610841
  57. [57] B. Malgrange: Existence et approximation des solutions des équations aux dérivées partielles et des équations des convolutions. Annales de L'Institut Fourier(Grenoble). VI (1955/6), 271-355. Zbl0071.09002MR86990
  58. [58] A. Martineau: Sur les fonctionnelles analytiques et la transformation de Fourier Borel. Journal d'Analyse Mathématique. Vol. XI (1963), 1-164. Zbl0124.31804
  59. [59] A. Martineau: Equations différentielles d'order infinie. Bull. Soc. Math. France, 95 (1967), 109-154. Zbl0167.44202MR1507968
  60. [60] L. Nachbin: Recent developments in infinite-dimensional holomorphy. Bull. Am. Math. Soc.79 (1973), 625-640. Zbl0279.32017MR322509
  61. [61] L. Nachbin: Topology on spaces of holomorphic mappings. Ergebnisse der Mathematik und ihrer Grenzgebiet, Band 47. Springer-Verlag. Berlin (1969). Zbl0172.39902MR254579
  62. [62] L. Nachbin: Convolution operators in spaces of nuclearly entire functions on a Banach space. Functional Analysis and Related Fields (Editor: F.E. Browder Springer-Verlag, Berlin, (1970), 167-171. Zbl0217.16403
  63. [63] L. Nachbin: Concerning holomorphy types for Banach spaces. Proc. International Colloquium on Nuclear Spaces and Ideals in Operator Algebras (Warsaw, 1969). Studia Math.38 (1970), 407-412. Zbl0212.14701MR278055
  64. [64] L. Nachbin: Convoluções em funções inteiras nucleares. Atas da 2a Quinzema de Análise Funcional e Equações Diferenciais Parciais. Soc. Bras. de Matemática. (1972). 
  65. [65] B.A. Taylor: Some locally convex spaces of entire functions. Proceedings of Symposia in Pure Mathematics, Vol. 11. Entire Functions and Related Parts Analysis (1968), A.M.A. Zbl0181.13304

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.