On the values of the zeta function of a variety over a finite field

Peter Schneider

Compositio Mathematica (1982)

  • Volume: 46, Issue: 2, page 133-143
  • ISSN: 0010-437X

How to cite

top

Schneider, Peter. "On the values of the zeta function of a variety over a finite field." Compositio Mathematica 46.2 (1982): 133-143. <http://eudml.org/doc/89549>.

@article{Schneider1982,
author = {Schneider, Peter},
journal = {Compositio Mathematica},
keywords = {values of zeta function; finite ground field; zeta function; Galois descent},
language = {eng},
number = {2},
pages = {133-143},
publisher = {Martinus Nijhoff Publishers},
title = {On the values of the zeta function of a variety over a finite field},
url = {http://eudml.org/doc/89549},
volume = {46},
year = {1982},
}

TY - JOUR
AU - Schneider, Peter
TI - On the values of the zeta function of a variety over a finite field
JO - Compositio Mathematica
PY - 1982
PB - Martinus Nijhoff Publishers
VL - 46
IS - 2
SP - 133
EP - 143
LA - eng
KW - values of zeta function; finite ground field; zeta function; Galois descent
UR - http://eudml.org/doc/89549
ER -

References

top
  1. [1] P. Bayer and J. Neukirch: On values of zeta functions and l-adic Euler characteristics. Inventiones Math.50 (1978) 35-64. Zbl0409.12018MR516603
  2. [2] P. Deligne: La conjecture de Weil I. Publ. Math. IHES43 (1975) 273-303. Zbl0287.14001MR340258
  3. [3] R. Hoobler: Brauer groups of abelian schemes. Ann. Sci. E.N.S.5 (1972) 45-70. Zbl0239.14017MR311664
  4. [4] S.L. Kleiman: Algebraic cycles and the Weil conjectures. In Dix exposés sur la cohomologie des schémas, North-Holland Publ., Amsterdam1968, pp. 359-386. Zbl0198.25902MR292838
  5. [5] J.S. Milne: On a conjecture of Artin and Tate. Ann. Math.102 (1975) 517-533. Zbl0343.14005MR414558
  6. [6] J.S. Milne: Etale Cohomology. Princeton Univ. Press1980. Zbl0433.14012MR559531
  7. [7] D. Mumford: Bi-extensions of formal groups. In Algebraic Geometry, Bombay1968, Oxford Univ. Press1969, pp. 307-322. Zbl0216.33101MR257089
  8. [8] D. Mumford: Abelian Varieties. Oxford Univ. Press1974. Zbl0326.14012
  9. [9] J. Roberts: Chow's moving lemma. In Algebraic Geometry, Oslo1970 (F. Oort, ed.), Wolters-Noordhoff1972, pp. 89-96. Zbl0237.00014MR382269
  10. [10] J.-P. Serre: Zeta and L Functions, In Arithmetical Algebraic Geometry, Conf. Purdue Univ. 1963, pp. 82-92. Zbl0171.19602MR194396
  11. [11] J. Tate: Algebraic cycles and poles of zeta functions. In Arithmetical Algebraic Geometry, Conf. Purdue Univ. 1963, pp. 93-110. Zbl0213.22804MR225778
  12. [12] J. Tate: On the conjecture of Birch and Swinnerton-Dyer and a geometric analog. Sém. Bourbaki1966, exp. 306. Zbl0199.55604
  13. [13] J. Tate: Endomorphisms of abelian varieties over finite fields. Inventiones Math.2 (1966) 134-144. Zbl0147.20303MR206004
  14. SGA 41/2 Cohomologie Etale,par P. DeligneSpringer Lect. Notes in Math. 569, Heidelberg1977. Zbl0349.14008MR463174

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.