Local coefficients and normalization of intertwining operators for G L ( n )

Freydoon Shahidi

Compositio Mathematica (1983)

  • Volume: 48, Issue: 3, page 271-295
  • ISSN: 0010-437X

How to cite

top

Shahidi, Freydoon. "Local coefficients and normalization of intertwining operators for $GL(n)$." Compositio Mathematica 48.3 (1983): 271-295. <http://eudml.org/doc/89594>.

@article{Shahidi1983,
author = {Shahidi, Freydoon},
journal = {Compositio Mathematica},
keywords = {automorphic forms; non-archimedean local field; normalizing factor; intertwining operators; Langlands' conjecture; Whittaker functionals; cuspidal; square-integrable representations; L-functions; Eisenstein series; epsilon functions},
language = {eng},
number = {3},
pages = {271-295},
publisher = {Martinus Nijhoff Publishers},
title = {Local coefficients and normalization of intertwining operators for $GL(n)$},
url = {http://eudml.org/doc/89594},
volume = {48},
year = {1983},
}

TY - JOUR
AU - Shahidi, Freydoon
TI - Local coefficients and normalization of intertwining operators for $GL(n)$
JO - Compositio Mathematica
PY - 1983
PB - Martinus Nijhoff Publishers
VL - 48
IS - 3
SP - 271
EP - 295
LA - eng
KW - automorphic forms; non-archimedean local field; normalizing factor; intertwining operators; Langlands' conjecture; Whittaker functionals; cuspidal; square-integrable representations; L-functions; Eisenstein series; epsilon functions
UR - http://eudml.org/doc/89594
ER -

References

top
  1. [1] J. Arthur: On the invariant distributions associated to weighted orbital integrals, preprint. 
  2. [2] I.N. Bernstein and A.V. Zelevinskii: Induced representations of the group GL(n) over a p-adic field, Functional Anal. Appl.10: 3 (1976) 225-227. Zbl0342.22014MR425031
  3. [3] I.N. Bernstein and A.V. Zelevinskii: Induced representations of reductive p-adic groups I, Ann. Scient. Éc. Norm. Sup.10 (1977) 441-472. Zbl0412.22015MR579172
  4. [4] W. Casselman: Some general results in the theory of admissible representations of p-adic reductive groups, preprint. 
  5. [5] W. Casselman and J.A. Shalika: The unramified principal series of p-adic groups II; The Whittaker functions, Comp. Math.41 (1980) 207-231. Zbl0472.22005MR581582
  6. [6] H. Jacquet: From GL2 to GLn, 1975 U.S.-Japan Seminar on Number Theory, Ann Arbor. 
  7. [7] H. Jacquet and R.P. Langlands: Automorphic forms on GL2 I, (Lecture notes in Math.114, Springer-Verlag1970). Zbl0236.12010MR401654
  8. [8] H. Jacquet, I.I. Piatetski-Shapiro, and J.A. Shalika: Automorphic forms on GL(3), Ann. Math.109 (1979) 169-258. Zbl0401.10037
  9. [9] H. Jacquet and J.A. Shalika: On Euler products and the classification of automorphic representations I, Amer. J. Math.103 (1981) 499-558. Zbl0473.12008MR618323
  10. [10] R.P. Langlands: On the functional equations satisfied by Eisenstein series. (Lecture notes in Math.544, Springer-Verlag, 1976). Zbl0332.10018MR579181
  11. [11] G.I. OlšANSKIĭ:Intertwining operators and complementary series, Math. USSR Sbornik22 (1974) 217-255. Zbl0309.22014
  12. [12] A.J. Silberger: Introduction to harmonic analysis on reductive p-adic groups, based on lectures by Harish-Chandra at the Institute for Advanced Study, 1971-73, Mathematical Notes of Princeton University Press, No. 23, Princeton, N.J., 1979. Zbl0458.22006MR544991
  13. [13] A.J. Silberger: Special representations of reductive p-adic groups are not integrable, Ann. Math.111 (1980) 571-587. Zbl0437.22015MR577138
  14. [14] F. Shahidi: Functional equation satisfied by certain L-functions, Comp. Math.37 (1978) 171-208. Zbl0393.12017MR498494
  15. [15] F. Shahidi: On certain L-functions, Amer. J. Math.103 (1981) 297-355. Zbl0467.12013MR610479
  16. [16] D. Vogan: Gelfand-Kirillov dimension for Harish-Chandra modules, Invent. Math.48 (1978) 75-98. Zbl0389.17002MR506503

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.