Varieties in positive characteristic with trivial tangent bundle

V. B. Mehta; V. Srinivas

Compositio Mathematica (1987)

  • Volume: 64, Issue: 2, page 191-212
  • ISSN: 0010-437X

How to cite


Mehta, V. B., and Srinivas, V.. "Varieties in positive characteristic with trivial tangent bundle." Compositio Mathematica 64.2 (1987): 191-212. <>.

author = {Mehta, V. B., Srinivas, V.},
journal = {Compositio Mathematica},
keywords = {positive characteristic; trivial tangent bundle; Serre-Tate canonical lifting; quotients of ordinary abelian varieties},
language = {eng},
number = {2},
pages = {191-212},
publisher = {Martinus Nijhoff Publishers},
title = {Varieties in positive characteristic with trivial tangent bundle},
url = {},
volume = {64},
year = {1987},

AU - Mehta, V. B.
AU - Srinivas, V.
TI - Varieties in positive characteristic with trivial tangent bundle
JO - Compositio Mathematica
PY - 1987
PB - Martinus Nijhoff Publishers
VL - 64
IS - 2
SP - 191
EP - 212
LA - eng
KW - positive characteristic; trivial tangent bundle; Serre-Tate canonical lifting; quotients of ordinary abelian varieties
UR -
ER -


  1. 1 Ching-Li Chai: Compactification of Siegel moduli schemes, London Math. Soc. Lect. Note Ser. No. 107, Cambridge (1985). Zbl0578.14009MR853543
  2. 2 V.G. Drinfeld, Coverings of p-adic symmetric regions, Funct. Anal. Appl.10 (1976) 107-115. Zbl0346.14010MR422290
  3. 3 A. Grothendieck, Elements de Geometrie Algebrique, III, Publ. Math. IHES11 (1961), 17 (1963). 
  4. 4 A. Grothendieck, Reventements etale et group fondamental (SGA 1), Lect. Notes in Math. No. 224, Springer-Verlag, Berlin (1971). Zbl0234.14002MR2017446
  5. 5 J.-I. Igusa, A fundamental inequality in the theory of Picard varieties, Proc. Nat. Acad. Sci. USA41 (1955) 318-320. Zbl0067.39201MR71113
  6. 6 J.-I. Igusa, On some problems in Abstract Algebraic Geometry, Proc. Nat. Acad. Sci. USA41 (1955) 964-967. Zbl0067.39102MR74085
  7. 7 J.-I. Igusa, On the structure of a certain class of Kähler varieties, Am. J. Math.76 (1954) 669-678. Zbl0058.37901MR63740
  8. 8 L. Illusia, Complex de De Rham-Witt et cohomologie cristalline, Ann. Sci. Ecole Norm. Sup.12 (1979) 501-661. Zbl0436.14007
  9. 9 L. Illusie and M. Raynaud: Les suites spectrales associees au complexe de De Rham-Publ. Math. IHES57 (1983) 73-212. Zbl0538.14012MR699058
  10. 10 S. Kobayashi, Recent results in Complex Differential Geometry, Jber. d. Dt. Math.-Verein83 (1981) 147-158. Zbl0467.53030MR635391
  11. 11 H. Lange and U. Stuhler: Vektorbündel auf Kurven and Darstellungen der algebraischen Fundamentalgruppe, Math. Zeit.156 (1977) 73-83. Zbl0349.14018MR472827
  12. 12 V.B. Mehta and M. Nori: Semistable sheaves on homogeneous spaces and Abelian varieties, Proc. Indian Acad. Sci. (Math. Sci.)93 (1984) 1-12. Zbl0592.14017MR796768
  13. 13 V.B. Mehta and A. Ramanathan: Frobenius splitting and cohomology vanishing for Schubert varieties, Ann. Math.122 (1985) 27-40. Zbl0601.14043MR799251
  14. 14 W. Messing, The Crystals associated to Barsotti-Tate groups: with applications to Abelian schemes, Lect. Notes in Math. No. 264, Springer-Verlag, Berlin (1972). Zbl0243.14013MR347836
  15. 15 J.-P. Serre and J. Tate: Good reduction of Abelian varieties, Ann. Math.88 (1968) 492-517. Zbl0172.46101MR236190
  16. 16 J.-P. Serre, Quelques propriétés des variétés abéliennes en caractéristique p. Am. J. Math.80 (1958) 715-739. Zbl0099.16201MR98100
  17. 17 A. Grothendieck, Groupes de Monodromie en Géometrie Algébrique, SGA 7, Lect. Notes in Math. No. 288, Springer-Verlag, Berlin (1972). Zbl0237.00013
  18. 18 L. Moret-Bailly, Pinceaux de variétés abéliennes, Astérisque129 (1985). Zbl0595.14032MR797982
  19. 19 P. Deligne, L. Illusie: Relèvements modulo p2 et décomposotion du complexe de de Rham, Inventiones Mathematicae89 (1987) 247-270. Zbl0632.14017MR894379

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.