On prime factors of sums of integers I
K. Györy; C. L. Stewart; R. Tijdeman
Compositio Mathematica (1986)
- Volume: 59, Issue: 1, page 81-88
- ISSN: 0010-437X
Access Full Article
topHow to cite
topReferences
top- [1] A. Baker: The theory of linear forms in logarithms. In: A. Baker and D.W. Masser (eds.), Transcendence theory: Advances and applications, London and New York: Academic Press (1977), pp. 1-27. Zbl0361.10028MR498417
- [2] A. Balog and A. Sárközy: On sums of sequences of integers, II, Acta Math. Hungar., to appear. Zbl0559.10034MR759044
- [3] P. Erdös: Problems in number theory and combinatorics. Proc. 6th Manitoba Conference on Numerical Math. (1976), pp. 35-58. Zbl0471.10002MR422031
- [4] P. Erdös and P. Turán: On a problem in the elementary theory of numbers. Amer. Math. Monthly41 (1934), 608-611. Zbl0010.29401MR1523239JFM60.0917.05
- [5] J.-H. Evertse: On sums of S-units and linear recurrences. Compositio Math.53 (1984) 225-244. Zbl0547.10008MR766298
- [6] J.-H. Evertse: On equations in S-units and the Thue-Mahler equation. Invent. Math.75 (1984) 561-584. Zbl0521.10015MR735341
- [7] A.J. Van Der Poorten: Linear forms in logarithms in the p-adic case. In: A. Baker and D.W. Masser (eds.), Transcendence theory: Advances and applications, London and New York: Academic Press (1977), pp. 29-57. Zbl0367.10034MR498418
- [8] A.J. Van Der Poorten and H.P. Schlickewei: The growth conditions for recurrence sequences. Macquarie Math. Report 82-0041(1982).
- [9] J. Barkly Rosser and L. Schoenfeld: Approximate formulas for some functions of prime numbers. Illinois J. Math.6 (1962), 64-94. Zbl0122.05001MR137689
- [10] A. Sárközy and C.L. Stewart: On divisors of sums of integers I. Acta Math. Hungar., to appear. Zbl0612.10042MR858392
- [11] A. Sárközy and C.L. Stewart: On divisors of sums of integers II. J. Reine Angew. Math., to appear. Zbl0578.10045MR826157
- [12] C.L. Stewart and R. Tijdeman: On prime factors of sums of integers II, In: J.H. Loxton and A.J. van der Poorten (eds.), Diophantine Analysis, Cambridge University Press, to appear. Zbl0602.10032MR874122