Quasi-periodic functions and Drinfeld modular forms

Ernst-Ulrich Gekeler

Compositio Mathematica (1989)

  • Volume: 69, Issue: 3, page 277-293
  • ISSN: 0010-437X

How to cite

top

Gekeler, Ernst-Ulrich. "Quasi-periodic functions and Drinfeld modular forms." Compositio Mathematica 69.3 (1989): 277-293. <http://eudml.org/doc/89949>.

@article{Gekeler1989,
author = {Gekeler, Ernst-Ulrich},
journal = {Compositio Mathematica},
keywords = {de Rham cohomology; function field; Drinfeld modules; Legendre relation; modular forms},
language = {eng},
number = {3},
pages = {277-293},
publisher = {Kluwer Academic Publishers},
title = {Quasi-periodic functions and Drinfeld modular forms},
url = {http://eudml.org/doc/89949},
volume = {69},
year = {1989},
}

TY - JOUR
AU - Gekeler, Ernst-Ulrich
TI - Quasi-periodic functions and Drinfeld modular forms
JO - Compositio Mathematica
PY - 1989
PB - Kluwer Academic Publishers
VL - 69
IS - 3
SP - 277
EP - 293
LA - eng
KW - de Rham cohomology; function field; Drinfeld modules; Legendre relation; modular forms
UR - http://eudml.org/doc/89949
ER -

References

top
  1. 1 G. Anderson: t-motives. Duke Math. J.53 (1986) 457-502. Zbl0679.14001MR850546
  2. 2 G. Anderson: Drinfeld modules and tensor products. In preparation. 
  3. 3 V.G. Drinfeld: Elliptic modules (russian). Math. Sbornik94 (1974) 594-627; English translation: Math. USSR-Sbornik23 (1976) 561-592. Zbl0321.14014MR384707
  4. 4 E.U. Gekeler: Modulare Einheiten für Funktionenkörper. J. reine angew. Math.348 (1984) 94-115. Zbl0523.14021MR733925
  5. 5 E.U. Gekeler: Drinfeld modular curves. Lecture Notes in Mathematics1231. Springer-Verlag (1986). Zbl0607.14020MR874338
  6. 6 E.U. Gekeler: On the coefficients of Drinfeld modular forms. Inv. Math.93 (1988) 667-700. Zbl0653.14012MR952287
  7. 7 L. Gerritzen and M. van der Put: Schottky groups and Mumford curves. Lecture Notes in Mathematics 817. Springer-Verlag (1980). Zbl0442.14009MR590243
  8. 8 N. Katz: P-adic properties of modular schemes and modular forms. Lecture Notes in Mathematics35069-190. Springer-Verlag (1973). Zbl0271.10033MR447119
  9. 9 E.U. Gekeler: On the de Rham isomorphism for Drinfeld modules. IAS-Preprint Princeton1988. MR1018059

NotesEmbed ?

top

You must be logged in to post comments.