Quasi-periodic functions and Drinfeld modular forms

Ernst-Ulrich Gekeler

Compositio Mathematica (1989)

  • Volume: 69, Issue: 3, page 277-293
  • ISSN: 0010-437X

How to cite

top

Gekeler, Ernst-Ulrich. "Quasi-periodic functions and Drinfeld modular forms." Compositio Mathematica 69.3 (1989): 277-293. <http://eudml.org/doc/89949>.

@article{Gekeler1989,
author = {Gekeler, Ernst-Ulrich},
journal = {Compositio Mathematica},
keywords = {de Rham cohomology; function field; Drinfeld modules; Legendre relation; modular forms},
language = {eng},
number = {3},
pages = {277-293},
publisher = {Kluwer Academic Publishers},
title = {Quasi-periodic functions and Drinfeld modular forms},
url = {http://eudml.org/doc/89949},
volume = {69},
year = {1989},
}

TY - JOUR
AU - Gekeler, Ernst-Ulrich
TI - Quasi-periodic functions and Drinfeld modular forms
JO - Compositio Mathematica
PY - 1989
PB - Kluwer Academic Publishers
VL - 69
IS - 3
SP - 277
EP - 293
LA - eng
KW - de Rham cohomology; function field; Drinfeld modules; Legendre relation; modular forms
UR - http://eudml.org/doc/89949
ER -

References

top
  1. 1 G. Anderson: t-motives. Duke Math. J.53 (1986) 457-502. Zbl0679.14001MR850546
  2. 2 G. Anderson: Drinfeld modules and tensor products. In preparation. 
  3. 3 V.G. Drinfeld: Elliptic modules (russian). Math. Sbornik94 (1974) 594-627; English translation: Math. USSR-Sbornik23 (1976) 561-592. Zbl0321.14014MR384707
  4. 4 E.U. Gekeler: Modulare Einheiten für Funktionenkörper. J. reine angew. Math.348 (1984) 94-115. Zbl0523.14021MR733925
  5. 5 E.U. Gekeler: Drinfeld modular curves. Lecture Notes in Mathematics1231. Springer-Verlag (1986). Zbl0607.14020MR874338
  6. 6 E.U. Gekeler: On the coefficients of Drinfeld modular forms. Inv. Math.93 (1988) 667-700. Zbl0653.14012MR952287
  7. 7 L. Gerritzen and M. van der Put: Schottky groups and Mumford curves. Lecture Notes in Mathematics 817. Springer-Verlag (1980). Zbl0442.14009MR590243
  8. 8 N. Katz: P-adic properties of modular schemes and modular forms. Lecture Notes in Mathematics35069-190. Springer-Verlag (1973). Zbl0271.10033MR447119
  9. 9 E.U. Gekeler: On the de Rham isomorphism for Drinfeld modules. IAS-Preprint Princeton1988. MR1018059

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.