Root systems and Jacobi forms

Klaus Wirthmüller

Compositio Mathematica (1992)

  • Volume: 82, Issue: 3, page 293-354
  • ISSN: 0010-437X

How to cite

top

Wirthmüller, Klaus. "Root systems and Jacobi forms." Compositio Mathematica 82.3 (1992): 293-354. <http://eudml.org/doc/90155>.

@article{Wirthmüller1992,
author = {Wirthmüller, Klaus},
journal = {Compositio Mathematica},
keywords = {invariant theory; modular group; Weyl group; root system; toroidal embedding; Jacobi forms; polynomial algebra; deformation of fat points},
language = {eng},
number = {3},
pages = {293-354},
publisher = {Kluwer Academic Publishers},
title = {Root systems and Jacobi forms},
url = {http://eudml.org/doc/90155},
volume = {82},
year = {1992},
}

TY - JOUR
AU - Wirthmüller, Klaus
TI - Root systems and Jacobi forms
JO - Compositio Mathematica
PY - 1992
PB - Kluwer Academic Publishers
VL - 82
IS - 3
SP - 293
EP - 354
LA - eng
KW - invariant theory; modular group; Weyl group; root system; toroidal embedding; Jacobi forms; polynomial algebra; deformation of fat points
UR - http://eudml.org/doc/90155
ER -

References

top
  1. [van Asch] A. van Asch, Modular forms and root systems, Math. Ann.222 (1976), 145-170. Zbl0329.10017MR412108
  2. [Bernshtein and Shvartsman] I.N. Bernshtein and O.V. Shvartsman, Chevalley's theorem for complex crystallographic Coxeter groups, Funct. Anal. Appl.12 (1978), 308-310. Zbl0458.32017
  3. [Bourbaki] N. Bourbaki, Groupes et Algebres de Lie, Ch. 4, 5, 6, Masson, 1981. Zbl0483.22001MR647314
  4. [Demazure 1] M. Demazure, Sous-groupes algébriques de rang maximum du groupe de Dremona, Ann. Sci. Ecole Norm. Sup.3 (1970). Zbl0223.14009MR284446
  5. [Demazure 2] M. Demazure, Surfaces de Del Pezzo, in: Séminaire sur les singularités des surfaces, Springer Lecture Notes in Math. 777 (1980). Zbl0444.14024
  6. [Eichler and Zagier] M. Eichler and D. Zagier, The Theory of Jacobi Forms, Birkhäuser, 1985. Zbl0554.10018MR781735
  7. [Gunning] R.C. Gunning, Lectures on Modular Forms, Annals of Math. Studies48, Princeton University Press, 1962. Zbl0178.42901MR132828
  8. [Kac] V.G. Kac, Infinite Dimensional Lie Algebras, Birkhäuser, 1983. MR739850
  9. [Kac and Peterson] V. Kac and D. Peterson, Infinite-dimensional Lie algebras, theta-functions and modular forms, Adv. in Math.53 (1984), 125-264. Zbl0584.17007MR750341
  10. [Kempf et al] G. Kempf et al., Toroidal Embeddings I, Springer Lecture Notes in Math. 339 (1973). Zbl0271.14017MR335518
  11. [Looijenga 1] E. Looijenga, Root systems and elliptic curves, Invent. Math.38 (1976), 17-32. Zbl0358.17016MR466134
  12. [Looijenga 2] E. Looijenga, On the semi-universal deformation of a simple-elliptic hypersurface singularity II, Topology17 (1978), 23-40. Zbl0392.57013MR492380
  13. [Looijenga 3] E. Looijenga, Invariant theory for generalized root systems, Invent. Math.61 (1980), 1-32. Zbl0436.17005MR587331
  14. [Mumford] D. Mumford, Abelian Varieties, Tata Institute of Fundamental Research Studies in Mathematics, Oxford University Press, 1970. Zbl0223.14022MR282985
  15. [Namikawa] Y. Namikawa, Toroidal degeneration of abelian varieties, in: Complex Analysis and Algebraic Geometry, Tokio, Cambridge University Press, 1977. Zbl0351.14020MR457436
  16. [Saito 1] K. Saito, Families of line bundles over elliptic curves, Kyoto University, 1988 (preprint RIMS-626). 
  17. [Saito 2] K. Saito, Extended affine root systems II, Kyoto University, 1988 (preprint RIMS-633). 
  18. [Siu and Trautmann] Y.-T. Siu and G. Trautmann, Gap-Sheaves and Extension of Coherent Analytic Subsheaves, Springer Lecture Notes in Math. 172 (1971). Zbl0208.10403MR287033
  19. [Wirthmüller 1] K. Wirthmüller, Deformations of fat points of Boardman type 2, 0, Math. Ann.259 (1982), 519-539. Zbl0469.32009MR660046
  20. [Wirthmüller 2] K. Wirthmüller, Torus embeddings and deformations of simple singularities of space curves, Acta Math.157 (1986), 159-241. Zbl0635.14015MR857673

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.