Gerstenhaber and Batalin-Vilkovisky algebras; algebraic, geometric, and physical aspects

Claude Roger

Archivum Mathematicum (2009)

  • Volume: 045, Issue: 4, page 301-324
  • ISSN: 0044-8753

Abstract

top
We shall give a survey of classical examples, together with algebraic methods to deal with those structures: graded algebra, cohomologies, cohomology operations. The corresponding geometric structures will be described(e.g., Lie algebroids), with particular emphasis on supergeometry, odd supersymplectic structures and their classification. Finally, we shall explain how BV-structures appear in Quantum Field Theory, as a version of functional integral quantization.

How to cite

top

Roger, Claude. "Gerstenhaber and Batalin-Vilkovisky algebras; algebraic, geometric, and physical aspects." Archivum Mathematicum 045.4 (2009): 301-324. <http://eudml.org/doc/250559>.

@article{Roger2009,
abstract = {We shall give a survey of classical examples, together with algebraic methods to deal with those structures: graded algebra, cohomologies, cohomology operations. The corresponding geometric structures will be described(e.g., Lie algebroids), with particular emphasis on supergeometry, odd supersymplectic structures and their classification. Finally, we shall explain how BV-structures appear in Quantum Field Theory, as a version of functional integral quantization.},
author = {Roger, Claude},
journal = {Archivum Mathematicum},
keywords = {supergeometry; odd symplectic manifolds; functional integral quantization; Graded Lie Algebras; Hochschild cohomology; supergeometry; odd symplectic manifold; functional integral quantization; graded Lie algebra; Hochschild cohomology},
language = {eng},
number = {4},
pages = {301-324},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Gerstenhaber and Batalin-Vilkovisky algebras; algebraic, geometric, and physical aspects},
url = {http://eudml.org/doc/250559},
volume = {045},
year = {2009},
}

TY - JOUR
AU - Roger, Claude
TI - Gerstenhaber and Batalin-Vilkovisky algebras; algebraic, geometric, and physical aspects
JO - Archivum Mathematicum
PY - 2009
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 045
IS - 4
SP - 301
EP - 324
AB - We shall give a survey of classical examples, together with algebraic methods to deal with those structures: graded algebra, cohomologies, cohomology operations. The corresponding geometric structures will be described(e.g., Lie algebroids), with particular emphasis on supergeometry, odd supersymplectic structures and their classification. Finally, we shall explain how BV-structures appear in Quantum Field Theory, as a version of functional integral quantization.
LA - eng
KW - supergeometry; odd symplectic manifolds; functional integral quantization; Graded Lie Algebras; Hochschild cohomology; supergeometry; odd symplectic manifold; functional integral quantization; graded Lie algebra; Hochschild cohomology
UR - http://eudml.org/doc/250559
ER -

References

top
  1. Akman, F., 10.1016/S0022-4049(01)00026-3, J. Pure Appl. Algebra 167 (2002), no. 2-3, 129–163. MR MR1874538 (2002k:17001) (2002) Zbl1008.17001MR1874538DOI10.1016/S0022-4049(01)00026-3
  2. Batalin, I. A., Vilkovisky, G. A., 10.1016/0370-2693(81)90205-7, Phys. Lett. B 102 (1981), no. 1, 27–31. MR MR616572 (82j:81047) (1981) MR0616572DOI10.1016/0370-2693(81)90205-7
  3. Batalin, I. A., Vilkovisky, G. A., 10.1103/PhysRevD.28.2567, Phys. Rev. D (3) 28 (1983), no. 10, 2567–2582. MR MR726170 (85i:81068a) (1983) MR0726170DOI10.1103/PhysRevD.28.2567
  4. Bonechi, F., Zabzine, M., 10.1007/s00220-008-0615-1, Comm. Math. Phys. 285 (2009), no. 3, 1033–1063. (2009) Zbl1247.53092MR2470915DOI10.1007/s00220-008-0615-1
  5. Bouwknegt, P., McCarthy, J., Pilch, K., The 𝒲 3 algebra, Lecture Notes in Physics. New Series m: Monographs, vol. 42, Springer-Verlag, Berlin, 1996. MR MR1423803 (97m:17029) (1996) MR1423803
  6. Brylinski, J.-L.,, A differential complex for Poisson manifolds, J. Differential Geom. 28 (1988), no. 1, 93–114. MR MR950556 (89m:58006) (1988) Zbl0634.58029MR0950556
  7. Cahen, M., Gutt, S., De Wilde, M., 10.1007/BF00316669, Lett. Math. Phys. 4 (1980), no. 3, 157–167. MR MR583079 (81j:58046) (1980) MR0583079DOI10.1007/BF00316669
  8. Calvez-Carillo, I., Tonks, A., Vallette, B., Homotopy Batalin-Vilkovisky algebras, Preprint, 2008. MR MR2062626 (2005i:53122) (2008) 
  9. Cartan, H., Eilenberg, S., Homological Algebra, Princeton University Press, Princeton, NJ, 1956. (1956) Zbl0075.24305MR0077480
  10. Cattaneo, A., On the BV-formalism, Preprint, Zürich Universität, 2005. MR MR2062626 (2005i:53122) (2005) 
  11. Connes, A., Noncommutative geometry, Academic Press Inc., San Diego, CA, 1994. MR MR1303779 (95j:46063) (1994) Zbl0818.46076MR1303779
  12. De Wilde, M. and Lecomte, P.,, An homotopy formula for the Hochschild cohomology, Compositio Math. 96 (1995), no. 1, 99–109. MR MR1323727 (96f:16012) (1995) MR1323727
  13. Quantum fields and strings: a course for mathematicians. Vol. 1, 2, American Mathematical Society, Providence, RI, 1999, Material from the Special Year on Quantum Field Theory held at the Institute for Advanced Study, Princeton, NJ, 1996–1997. MR MR1701618 (2000e:81010) (1999) Zbl0984.00503MR1701618
  14. Gerstenhaber, M., The cohomology structure of an associative ring, Ann. of Math. (2) 78 (1963), 267–288. MR MR0161898 (28 #5102) (1963) Zbl0131.27302MR0161898
  15. Gerstenhaber, M., Schack, S. D., Algebraic cohomology and deformation theory, Deformation theory of algebras and structures and applications (Il Ciocco, 1986), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 247, Kluwer Acad. Publ., Dordrecht, 1988, pp. 11–264. MR MR981619 (90c:16016) (1988) Zbl0676.16022MR0981619
  16. Grothendieck, A., Éléments de géométrie algébrique. I. Le langage des schémas, Inst. Hautes Études Sci. Publ. Math. (1960), no. 4, 228. MR MR0217083 (36 #177a) (1960) Zbl0118.36206MR0163908
  17. Hochschild, G., Kostant, B., Rosenberg, A., 10.1090/S0002-9947-1962-0142598-8, Trans. Amer. Math. Soc. 102 (1962), 383–408. MR MR0142598 (26 #167) (1962) Zbl0102.27701MR0142598DOI10.1090/S0002-9947-1962-0142598-8
  18. Huebschmann, J., 10.5802/aif.1624, Ann. Inst. Fourier (Grenoble) 48 (1998), no. 2, 425–440. MR MR1625610 (99b:17021) (1998) Zbl0973.17027MR1625610DOI10.5802/aif.1624
  19. Khudaverdian, H. M., 10.1007/s00220-004-1083-x, Comm. Math. Phys. 247 (2004), no. 2, 353–390. MR MR2063265 (2005e:58004) (2004) Zbl1057.58002MR2063265DOI10.1007/s00220-004-1083-x
  20. Khudaverdian, H. M., Voronov, Th. Th., Differential forms and odd symplectic geometry, 2006, http://www.citebase.org/abstract?id=oai:arXiv.org:math/0606560. (2006) MR2462360
  21. Kontsevich, M., 10.1023/B:MATH.0000027508.00421.bf, Lett. Math. Phys. 66 (2003), no. 3, 157–216. MR MR2062626 (2005i:53122) (2003) Zbl1058.53065MR2062626DOI10.1023/B:MATH.0000027508.00421.bf
  22. Kosmann-Schwarzbach, Y., 10.1007/BF00996111, Acta Appl. Math. 41 (1995), no. 1-3, 153–165, Geometric and algebraic structures in differential equations. MR MR1362125 (97i:17021) (1995) Zbl0837.17014MR1362125DOI10.1007/BF00996111
  23. Lichnerowicz, A., Les variétés de Poisson et leurs algèbres de Lie associées, J. Differential Geom. 12 (1977), no. 2, 253–300. MR MR0501133 (58 #18565) (1977) Zbl0405.53024MR0501133
  24. Mac Lane, S.,, Homology, Classics in Mathematics, Springer-Verlag, Berlin, 1995, Reprint of the 1975 edition. MR MR1344215 (96d:18001) (1995) Zbl0818.18001MR1344215
  25. Markl, M., Shnider, S., Stasheff, J., Operads in algebra, topology and physics, Mathematical Surveys and Monographs, vol. 96, Amer. Math. Soc., Providence, RI, 2002. MR MR1898414 (2003f:18011) (2002) Zbl1017.18001MR1898414
  26. Nijenhuis, A., Geometric aspects of formal differential operations on tensors fields, Proc. Internat. Congress Math. 1958, Cambridge Univ. Press, New York, 1960, pp. 463–469. MR MR0170293 (30 #531) (1960) MR0170293
  27. Peetre, J., Une caractérisation abstraite des opérateurs différentiels, Math. Scand. 7 (1959), 211–218. (1959) Zbl0089.32502MR0112146
  28. Penkava, M., Schwarz, A., On some algebraic structures arising in string theory, Perspectives in mathematical physics, Conf. Proc. Lecture Notes Math. Phys., III, Int. Press, Cambridge, MA, 1994, pp. 219–227. MR MR1314668 (96b:81121) (1994) Zbl0871.17021MR1314668
  29. Poletaeva, E., 10.1007/BF00990540, Acta Appl. Math. 31 (1993), no. 2, 137–169. MR MR1223168 (94d:58166) (1993) Zbl0795.53025MR1223168DOI10.1007/BF00990540
  30. Schreiber, U., On the BV-formalism, Preprint, The n-category café, Department of Physics University of Texas at Austin (2006). MR MR2062626 (2005i:53122) (2006) 
  31. Schwarz, A., 10.1007/BF02097392, Comm. Math. Phys. 155 (1993), no. 2, 249–260. MR MR1230027 (95f:81095) (1993) Zbl0786.58017MR1230027DOI10.1007/BF02097392
  32. Felix Berezin: the life and death of the mastermind of supermathematics, World Scientific, 2007, Singapore, 2007, Andrei Losev: from Berezin integral to Batalin-Vilkovisky formalism: a mathematical physicist's point of view. (2007) MR2406259
  33. Stasheff, J., The (secret?) homological algebra of the Batalin-Vilkovisky approach, Secondary calculus and cohomological physics (Moscow, 1997), Contemp. Math., vol. 219, Amer. Math. Soc., Providence, RI, 1998, pp. 195–210. MR MR1640453 (2000f:18011) (1998) Zbl0969.17012MR1640453
  34. Tougeron, J.-C.,, Idéaux de fonctions différentiables, Springer Verlag, Berlin, Heidelberg, New York, 1972. (1972) Zbl0251.58001MR0440598
  35. Voronov, A. A., Gerstenhaber, M., 10.1007/BF01077036, Funktsional. Anal. i Prilozhen. 29 (1995), no. 1, 1–6, 96. MR MR1328534 (96g:18006) (1995) MR1328534DOI10.1007/BF01077036
  36. Waldmann, S., Poisson-Geometrie und Deformationsquantisierung. Eine Einführung, Springer-Verlag, Berlin-Heidelberg, 2007. (2007) Zbl1139.53001
  37. Xu, Ping,, Gerstenhaber algebras and BV-algebras in Poisson geometry, Comm. Math. Phys. 200 (1999), no. 3, 545–560. MR MR1675117 (2000b:17025) (1999) MR1675117

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.