Computing Iwasawa modules of real quadratic number fields
Compositio Mathematica (1995)
- Volume: 97, Issue: 1-2, page 135-155
- ISSN: 0010-437X
Access Full Article
topHow to cite
topKraft, James S., and Schoof, René. "Computing Iwasawa modules of real quadratic number fields." Compositio Mathematica 97.1-2 (1995): 135-155. <http://eudml.org/doc/90370>.
@article{Kraft1995,
author = {Kraft, James S., Schoof, René},
journal = {Compositio Mathematica},
keywords = {effective computation; Iwasawa modules; real quadratic fields; Greenberg's conjecture},
language = {eng},
number = {1-2},
pages = {135-155},
publisher = {Kluwer Academic Publishers},
title = {Computing Iwasawa modules of real quadratic number fields},
url = {http://eudml.org/doc/90370},
volume = {97},
year = {1995},
}
TY - JOUR
AU - Kraft, James S.
AU - Schoof, René
TI - Computing Iwasawa modules of real quadratic number fields
JO - Compositio Mathematica
PY - 1995
PB - Kluwer Academic Publishers
VL - 97
IS - 1-2
SP - 135
EP - 155
LA - eng
KW - effective computation; Iwasawa modules; real quadratic fields; Greenberg's conjecture
UR - http://eudml.org/doc/90370
ER -
References
top- [1]] Candiotti, A.: Computations of Iwasawa invariants and K 2, Compositio Math., 29 (1971), 89-111. Zbl0364.12003MR384746
- [2] Cassels, J.W.S. and Fröhlich, A.: Algebraic Number Theory, Academic Press, London1967. Zbl0153.07403MR215665
- [3] Gras, G. and Gras, M.-N.: Calcul du nombre de classes et des unités des extensions abéliennes réelles de Q, Bulletin des Sciences Math.101 (1977), 97-129. Zbl0359.12007MR480423
- [4] Greenberg, R.: On the Iwasawa invariants of totally real number fields, American J. of Math.98 (1976), 263-284. Zbl0334.12013MR401702
- [5] Greenberg, R.: A note on K2 and the theory of Zp-extensions, American J. of Math.100 (1978), 1235-1245. Zbl0408.12012MR522698
- [6] Kraft, J.S.: Iwasawa invariants of CM fields, Journal of Number Theory32 (1989), 65-77. Zbl0697.12004MR1002115
- [7] Mazur, B. and Wiles, A.: Class fields of abelian extensions of Q, Invent. Math.76 (1984), 179-330. Zbl0545.12005MR742853
- [8] Schoof, R.: Class numbers of Q(cos(2π/p)), in preparation.
- [9] Schoof, R.: The structure of minus class groups of abelian number fields, 185-204, in C. Goldstein, Séminaire de Théorie de Nombres, Paris1988-1990, Progress in Math. 91, Birkhäuser1990. Zbl0719.11074MR1104706
- [10] Sinnott, W.: On the Stickelberger ideal and the circular units of an abelian field, Invent. Math.62 (1980), 181-234. Zbl0465.12001MR595586
- [11] Taya, H.: Computation of Z3-invariants of real quadratic fields, Math. Comp., to appear. Zbl0851.11062MR1333326
- [12] Washington, L.C.: Introduction to Cyclotomic Fields, Graduate Texts in Math.83, Springer-Verlag, Berlin, Heidelberg, New York1982. Zbl0484.12001MR718674
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.