Computing Iwasawa modules of real quadratic number fields

James S. Kraft; René Schoof

Compositio Mathematica (1995)

  • Volume: 97, Issue: 1-2, page 135-155
  • ISSN: 0010-437X

How to cite

top

Kraft, James S., and Schoof, René. "Computing Iwasawa modules of real quadratic number fields." Compositio Mathematica 97.1-2 (1995): 135-155. <http://eudml.org/doc/90370>.

@article{Kraft1995,
author = {Kraft, James S., Schoof, René},
journal = {Compositio Mathematica},
keywords = {effective computation; Iwasawa modules; real quadratic fields; Greenberg's conjecture},
language = {eng},
number = {1-2},
pages = {135-155},
publisher = {Kluwer Academic Publishers},
title = {Computing Iwasawa modules of real quadratic number fields},
url = {http://eudml.org/doc/90370},
volume = {97},
year = {1995},
}

TY - JOUR
AU - Kraft, James S.
AU - Schoof, René
TI - Computing Iwasawa modules of real quadratic number fields
JO - Compositio Mathematica
PY - 1995
PB - Kluwer Academic Publishers
VL - 97
IS - 1-2
SP - 135
EP - 155
LA - eng
KW - effective computation; Iwasawa modules; real quadratic fields; Greenberg's conjecture
UR - http://eudml.org/doc/90370
ER -

References

top
  1. [1]] Candiotti, A.: Computations of Iwasawa invariants and K 2, Compositio Math., 29 (1971), 89-111. Zbl0364.12003MR384746
  2. [2] Cassels, J.W.S. and Fröhlich, A.: Algebraic Number Theory, Academic Press, London1967. Zbl0153.07403MR215665
  3. [3] Gras, G. and Gras, M.-N.: Calcul du nombre de classes et des unités des extensions abéliennes réelles de Q, Bulletin des Sciences Math.101 (1977), 97-129. Zbl0359.12007MR480423
  4. [4] Greenberg, R.: On the Iwasawa invariants of totally real number fields, American J. of Math.98 (1976), 263-284. Zbl0334.12013MR401702
  5. [5] Greenberg, R.: A note on K2 and the theory of Zp-extensions, American J. of Math.100 (1978), 1235-1245. Zbl0408.12012MR522698
  6. [6] Kraft, J.S.: Iwasawa invariants of CM fields, Journal of Number Theory32 (1989), 65-77. Zbl0697.12004MR1002115
  7. [7] Mazur, B. and Wiles, A.: Class fields of abelian extensions of Q, Invent. Math.76 (1984), 179-330. Zbl0545.12005MR742853
  8. [8] Schoof, R.: Class numbers of Q(cos(2π/p)), in preparation. 
  9. [9] Schoof, R.: The structure of minus class groups of abelian number fields, 185-204, in C. Goldstein, Séminaire de Théorie de Nombres, Paris1988-1990, Progress in Math. 91, Birkhäuser1990. Zbl0719.11074MR1104706
  10. [10] Sinnott, W.: On the Stickelberger ideal and the circular units of an abelian field, Invent. Math.62 (1980), 181-234. Zbl0465.12001MR595586
  11. [11] Taya, H.: Computation of Z3-invariants of real quadratic fields, Math. Comp., to appear. Zbl0851.11062MR1333326
  12. [12] Washington, L.C.: Introduction to Cyclotomic Fields, Graduate Texts in Math.83, Springer-Verlag, Berlin, Heidelberg, New York1982. Zbl0484.12001MR718674

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.