Intégrabilité locale des caractères-distributions de G L N ( F ) F est un corps local non-archimédien de caractéristique quelconque

Bertrand Lemaire

Compositio Mathematica (1996)

  • Volume: 100, Issue: 1, page 41-75
  • ISSN: 0010-437X

How to cite

top

Lemaire, Bertrand. "Intégrabilité locale des caractères-distributions de $GL_{N}(F)$ où $F$ est un corps local non-archimédien de caractéristique quelconque." Compositio Mathematica 100.1 (1996): 41-75. <http://eudml.org/doc/90422>.

@article{Lemaire1996,
author = {Lemaire, Bertrand},
journal = {Compositio Mathematica},
keywords = {character; irreducible admissible representation; semisimple element; invariant distribution; Lie algebra},
language = {fre},
number = {1},
pages = {41-75},
publisher = {Kluwer Academic Publishers},
title = {Intégrabilité locale des caractères-distributions de $GL_\{N\}(F)$ où $F$ est un corps local non-archimédien de caractéristique quelconque},
url = {http://eudml.org/doc/90422},
volume = {100},
year = {1996},
}

TY - JOUR
AU - Lemaire, Bertrand
TI - Intégrabilité locale des caractères-distributions de $GL_{N}(F)$ où $F$ est un corps local non-archimédien de caractéristique quelconque
JO - Compositio Mathematica
PY - 1996
PB - Kluwer Academic Publishers
VL - 100
IS - 1
SP - 41
EP - 75
LA - fre
KW - character; irreducible admissible representation; semisimple element; invariant distribution; Lie algebra
UR - http://eudml.org/doc/90422
ER -

References

top
  1. [Bou] N. Bourbaki, Eléments de mathématiques: Algèbre Ch. VII, Hermann, Paris, 1958. Zbl0455.18010
  2. N. Bourbaki, Eléments de mathématiques: Variétés différentielles et analytiques, fascicule de résultats (nouveau tirage), c.c.l.s. diffusion, Paris, 1982. 
  3. [Bu] C.J. Bushnell, Hereditary orders, Gauss sums and supercuspidalrepresentations of GL(N), J. reine angew Math.375/376 (1987), 184-220. Zbl0601.12025MR882297
  4. [Be-Ze] I.N. Bernstein & A.V. Zelevinsky, Representations of the group GL(N, F) where F is a local non-archimedean field, Usp. Mat. Nauk.31,.n° 3 (1976), 5-70. Zbl0348.43007MR425030
  5. [Bu-Ku] C.J. Bushnell & P.C. Kutzko, The admissible dual of GL(N) via compact open subgroups, Ann. of Math. Studies, vol. 129, Princeton U. Press, Princeton, New Jersey, 1993. Zbl0787.22016MR1204652
  6. [Cl 1] L. Clozel, Characters of non-connected, reductive p -adic groups, Canad. J. Math.34 (1987), 149-167. Zbl0629.22008MR889110
  7. [Cl 2] L. Clozel, Orbital integrals on p-adic groups: a proof of the Howe conjecture, Ann. Math.129 (1989), 237-251. Zbl0675.22007MR986793
  8. [Cl 3] L. Clozel, Invariant harmonic analysis on the Schwartz space of a reductive p-adic group in Harmonic Analysis on Reductive p-adic groups, Proc. Bowdoin conf. 1989, Progress in Math. vol. 101 (W. Barker, P. Sally, ed.), Birkhäuser, Boston, 1991, 101-121. Zbl0760.22023MR1168480
  9. [Ha 1] Harish-Chandra, Invariant distributions on Lie Algebras, Amer. J. Math.86 (1964), 271-309. Zbl0131.33302MR161940
  10. [Ha 2] Harish-Chandra, Harmonic analysis on reductive p-adic groups, Lectures Notes in Math., vol. 162, Springer-Verlag, Berlin-Heidelberg-New York, 1970. Zbl0202.41101MR414797
  11. [Ha 3] Harish- Chandra, Admissible invariant distributions on reductive p-adic groups, Queen's Papers in Pure and Applied Math. 48 (1978), 377-380. 
  12. [Ho] R. Howe, The Fourier transform and germs of characters, Math. Ann.208 (1974), 305-322. Zbl0266.43007MR342645
  13. [Ka] D. Kazhdan, Cuspidal geometry of p-adic groups, J. Analyse Math.47 (1986), 1-36. Zbl0634.22009MR874042
  14. [La] G. Laumon, Cohomology with compact supports of Drinfeld modular varieties (Part 1). Publ. Math. U. Paris-Sud, 1991. 
  15. [Le] B. Lemaire, Thèse, univ. Paris-Sud, 8 février 1994. 
  16. [Ro] F. Rodier, Intégrabilité locale des caractères du groupe GL(n, k) où k est un corps local de caractéristique positive, Duke Math. J.85 (1985), 771-792. Zbl0609.22004MR808104
  17. [Rog] J.D. Rogawski, Representations of GL(n) and division algebras over a p-adic field, Duke Math. J.50 (1983), 161-196. Zbl0523.22015MR700135
  18. [Se] J.-P. Serre, Corps locaux, Hermann, Paris, 1962. Zbl0137.02601MR354618
  19. [Si] A.J. Silberger, Introduction to harmonic analysis on reductive p-adic groups, Mathematical Notes, vol. 23, Princeton Univ. Press, Princeton, New Jersey, 1979. Zbl0458.22006MR544991

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.