Intégrabilité locale des caractères-distributions de G L N ( F ) F est un corps local non-archimédien de caractéristique quelconque

Bertrand Lemaire

Compositio Mathematica (1996)

  • Volume: 100, Issue: 1, page 41-75
  • ISSN: 0010-437X

How to cite

top

Lemaire, Bertrand. "Intégrabilité locale des caractères-distributions de $GL_{N}(F)$ où $F$ est un corps local non-archimédien de caractéristique quelconque." Compositio Mathematica 100.1 (1996): 41-75. <http://eudml.org/doc/90422>.

@article{Lemaire1996,
author = {Lemaire, Bertrand},
journal = {Compositio Mathematica},
keywords = {character; irreducible admissible representation; semisimple element; invariant distribution; Lie algebra},
language = {fre},
number = {1},
pages = {41-75},
publisher = {Kluwer Academic Publishers},
title = {Intégrabilité locale des caractères-distributions de $GL_\{N\}(F)$ où $F$ est un corps local non-archimédien de caractéristique quelconque},
url = {http://eudml.org/doc/90422},
volume = {100},
year = {1996},
}

TY - JOUR
AU - Lemaire, Bertrand
TI - Intégrabilité locale des caractères-distributions de $GL_{N}(F)$ où $F$ est un corps local non-archimédien de caractéristique quelconque
JO - Compositio Mathematica
PY - 1996
PB - Kluwer Academic Publishers
VL - 100
IS - 1
SP - 41
EP - 75
LA - fre
KW - character; irreducible admissible representation; semisimple element; invariant distribution; Lie algebra
UR - http://eudml.org/doc/90422
ER -

References

top
  1. [Bou] N. Bourbaki, Eléments de mathématiques: Algèbre Ch. VII, Hermann, Paris, 1958. Zbl0455.18010
  2. N. Bourbaki, Eléments de mathématiques: Variétés différentielles et analytiques, fascicule de résultats (nouveau tirage), c.c.l.s. diffusion, Paris, 1982. 
  3. [Bu] C.J. Bushnell, Hereditary orders, Gauss sums and supercuspidalrepresentations of GL(N), J. reine angew Math.375/376 (1987), 184-220. Zbl0601.12025MR882297
  4. [Be-Ze] I.N. Bernstein & A.V. Zelevinsky, Representations of the group GL(N, F) where F is a local non-archimedean field, Usp. Mat. Nauk.31,.n° 3 (1976), 5-70. Zbl0348.43007MR425030
  5. [Bu-Ku] C.J. Bushnell & P.C. Kutzko, The admissible dual of GL(N) via compact open subgroups, Ann. of Math. Studies, vol. 129, Princeton U. Press, Princeton, New Jersey, 1993. Zbl0787.22016MR1204652
  6. [Cl 1] L. Clozel, Characters of non-connected, reductive p -adic groups, Canad. J. Math.34 (1987), 149-167. Zbl0629.22008MR889110
  7. [Cl 2] L. Clozel, Orbital integrals on p-adic groups: a proof of the Howe conjecture, Ann. Math.129 (1989), 237-251. Zbl0675.22007MR986793
  8. [Cl 3] L. Clozel, Invariant harmonic analysis on the Schwartz space of a reductive p-adic group in Harmonic Analysis on Reductive p-adic groups, Proc. Bowdoin conf. 1989, Progress in Math. vol. 101 (W. Barker, P. Sally, ed.), Birkhäuser, Boston, 1991, 101-121. Zbl0760.22023MR1168480
  9. [Ha 1] Harish-Chandra, Invariant distributions on Lie Algebras, Amer. J. Math.86 (1964), 271-309. Zbl0131.33302MR161940
  10. [Ha 2] Harish-Chandra, Harmonic analysis on reductive p-adic groups, Lectures Notes in Math., vol. 162, Springer-Verlag, Berlin-Heidelberg-New York, 1970. Zbl0202.41101MR414797
  11. [Ha 3] Harish- Chandra, Admissible invariant distributions on reductive p-adic groups, Queen's Papers in Pure and Applied Math. 48 (1978), 377-380. 
  12. [Ho] R. Howe, The Fourier transform and germs of characters, Math. Ann.208 (1974), 305-322. Zbl0266.43007MR342645
  13. [Ka] D. Kazhdan, Cuspidal geometry of p-adic groups, J. Analyse Math.47 (1986), 1-36. Zbl0634.22009MR874042
  14. [La] G. Laumon, Cohomology with compact supports of Drinfeld modular varieties (Part 1). Publ. Math. U. Paris-Sud, 1991. 
  15. [Le] B. Lemaire, Thèse, univ. Paris-Sud, 8 février 1994. 
  16. [Ro] F. Rodier, Intégrabilité locale des caractères du groupe GL(n, k) où k est un corps local de caractéristique positive, Duke Math. J.85 (1985), 771-792. Zbl0609.22004MR808104
  17. [Rog] J.D. Rogawski, Representations of GL(n) and division algebras over a p-adic field, Duke Math. J.50 (1983), 161-196. Zbl0523.22015MR700135
  18. [Se] J.-P. Serre, Corps locaux, Hermann, Paris, 1962. Zbl0137.02601MR354618
  19. [Si] A.J. Silberger, Introduction to harmonic analysis on reductive p-adic groups, Mathematical Notes, vol. 23, Princeton Univ. Press, Princeton, New Jersey, 1979. Zbl0458.22006MR544991

NotesEmbed ?

top

You must be logged in to post comments.