On the cuspidal cohomology of S -arithmetic subgroups of reductive groups over number fields

A. Borel; J.-P. Labesse; J. Schwermer

Compositio Mathematica (1996)

  • Volume: 102, Issue: 1, page 1-40
  • ISSN: 0010-437X

How to cite


Borel, A., Labesse, J.-P., and Schwermer, J.. "On the cuspidal cohomology of $S$-arithmetic subgroups of reductive groups over number fields." Compositio Mathematica 102.1 (1996): 1-40. <http://eudml.org/doc/90446>.

author = {Borel, A., Labesse, J.-P., Schwermer, J.},
journal = {Compositio Mathematica},
keywords = {reductive groups; nonvanishing of cuspidal cohomology; -arithmetic groups; Lefschetz numbers},
language = {eng},
number = {1},
pages = {1-40},
publisher = {Kluwer Academic Publishers},
title = {On the cuspidal cohomology of $S$-arithmetic subgroups of reductive groups over number fields},
url = {http://eudml.org/doc/90446},
volume = {102},
year = {1996},

AU - Borel, A.
AU - Labesse, J.-P.
AU - Schwermer, J.
TI - On the cuspidal cohomology of $S$-arithmetic subgroups of reductive groups over number fields
JO - Compositio Mathematica
PY - 1996
PB - Kluwer Academic Publishers
VL - 102
IS - 1
SP - 1
EP - 40
LA - eng
KW - reductive groups; nonvanishing of cuspidal cohomology; -arithmetic groups; Lefschetz numbers
UR - http://eudml.org/doc/90446
ER -


  1. [A1] Arthur, J.: A trace formula for reductive groups I: Terms associated to classes in G(Q), Duke Math. J.45 (1978) 911-952. Zbl0499.10032MR518111
  2. [A2] Arthur, J.: A trace formula for reductive groups II: Applications of a truncation operator, Compos. Math.40 (1980) 87-121. Zbl0499.10033MR558260
  3. [A3] Arthur, J.: A Paley-Wienertheorem for real reductive groups, Acta Mathematica150 (1983) 1-89. Zbl0514.22006MR697608
  4. [A4] Arthur, J.: The invariant trace formula. I. Local theory, J. Amer. Math. Soc.1 (1988) 323-383. Zbl0682.10021MR928262
  5. [A5] Arthur, J.: The invariant trace formula. II. Global theory, J. Amer. Math. Soc.1 (1988) 501-554. Zbl0667.10019MR939691
  6. [AC] Arthur, J. and Clozel, L.: Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula, Annals of Math. Studies120, Princeton Univ. Press, 1989. Zbl0682.10022MR1007299
  7. [BDK] Bernstein, J., Deligne, P. and Kazhdan, D.: Trace Paley-Wiener theorem for reductive p-adic groups, Journal d'Analyse Mathématique47 (1986) 180-192. Zbl0634.22011MR874050
  8. [BFG] Blasius, D., Franke, J. and Grunewald, F.: Cohomology of S-arithmetic groups in the number field case, Invent. Math.116 (1994) 75-93. Zbl0798.11020MR1253189
  9. [B1] Borel, A.: Some finiteness properties of adele groups over number fields, Publ. Math. I.H.E.S. 16 (1963) 5-30. Zbl0135.08902MR202718
  10. [B2] Borel, A.: Introduction aux Groupes Arithmétiques, Hermann, Paris, 1969. Zbl0186.33202MR244260
  11. [B3] Borel, A.: Admissible representations of a semisimple group over a local field with vectors fixed under an Iwahori subgroup, Invent. Math.35 (1976) 233-259. Zbl0334.22012MR444849
  12. [B4] Borel, A.: Stable real cohomology of arithmetic groups II. Manifolds and Lie groups, J. Hano et al. (eds.), Progress in Math.14, 21-55, Birkhäuser, Boston, Basel, Stuttgart, 1981. Zbl0483.57026MR642850
  13. [B5] Borel, A.: Regularization theorems in Lie algebra cohomology. Applications, Duke Math. J.50 (1983) 605-623. Zbl0528.22010MR714820
  14. [BC] Borel, A. and Casselman, W.: L2-Cohomology of locally symmetric manifolds of finite volume, Duke Math. J.50 (1983) 625-647. Zbl0528.22012MR714821
  15. [BG] Borel, A. and Garland, H.: Laplacian and discrete spectrum of an arithmetic group, Amer. J. Math.105 (1983) 309-335. Zbl0572.22007MR701563
  16. [BJ] Borel, A. and Jacquet, H.: Automorphic Forms and Automorphic Representations in Automorphic Forms, Representations and L-functions Proc. of Symp. in Pure Math. 33(1), 189-202, A.M.S., Providence, 1979. Zbl0414.22020MR546598
  17. [BS] Borel, A. and Serre, J.-P.: Cohomologie d'immeubles et de groupes S-arithmétiques, Topology15 (1976) 211-232. Zbl0338.20055MR447474
  18. [BT] Borel, A. and Tits J.: Homomorphismes 'abstraits' de groupes algébriques simples; Annals of Math.97 (1973) 499-571. Zbl0272.14013MR316587
  19. [BW] Borel, A. and Wallach, N.: Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, Annals of Math. Studies94, Princeton Univ. Press, Princeton, 1980. Zbl0443.22010MR554917
  20. [Bou] Bouaziz, A.: Sur les caractères des groupes de Lie réductifs non connexes, Journal of Funct. Anal.70 (1987) 1-79. Zbl0622.22009MR870753
  21. [Ca1] Casselman, W.: A new non-unitary argument for p-adic representations, J. Fac. Sci. Univ. Tokyo28 (1982) 907-928. Zbl0519.22011
  22. [Ca2] Casselman, W.: Introduction to the Schwartz space of Γ, Can. J. MathXLI (1989) 285-320. Zbl0723.22010
  23. [Cl1] Clozel, L.: Characters of non-connectedp-adic groups, Canad. J. Math.39 (1987) 149-167. Zbl0629.22008MR889110
  24. [Cl2] Clozel, L.: Représentations galoisiennes associées aux représentations automorphes autoduales de GL(n), Publ. Math. IHES73 (1991) 97-145. Zbl0739.11020MR1114211
  25. [Cl3] Clozel, L.: On the cohomology of Kottwitz's arithmetic varieties, Duke Math. J.72 (1993) 757-795. Zbl0974.11019MR1253624
  26. [CD] Clozel, L. and Delorme, P.: Le théorème de Paley-Wiener invariant pour les groupes de Lie réductifs II, Ann. Sci. Ec. Norm. Sup.4e serie 23 (1990) 193-228. Zbl0724.22012MR1046496
  27. [D] Delorme, P.: Théorème de Paley-Wiener invariant tordu pour le changement de base C/R, Compositio Math.80 (1991) 197-228. Zbl0765.22007MR1132093
  28. [DM] Dixmier, J. and Malliavin, P.: Factorisations de fonctions et de vecteurs indéfiniment différentiables, Bull. Sci. Math.102 (1978) 307-330. Zbl0392.43013MR517765
  29. [F] Franke, J.: Harmonic analysis in weighted L2-spaces. In preparation. 
  30. [HC] Harish-ChandraAutomorphic Forms on Semisimple Lie Groups, Lect. Notes in Math.62, Springer-Verlag, Berlin, Heidelberg, New York, 1968. Zbl0186.04702MR232893
  31. [Hel] Helgason, S.: Differential Geometry and Symmetric Spaces, Pure and Applied Math.12, Academic Press, 1962. Zbl0111.18101MR145455
  32. [J] Johnson, J.F.: Stable base change C/R of certain derived functor modules, Math. Annalen287 (1990) 467-493. Zbl0672.22016MR1060687
  33. [Ko] Kottwitz, R.E.: Tamagawa numbers, Annals of Math.127 (1988) 629-646. Zbl0678.22012MR942522
  34. [Lab] Labesse, J.-P.: Pseudo-coefficients très cuspidaux et K-theorie, Math. Ann.291 (1991) 607-616. Zbl0789.22028MR1135534
  35. [LS] Labesse, J.-P. and Schwermer, J.: On liftings and cusp cohomology of arithmetic groups, Invent. Math.83 (1986) 383-401. Zbl0581.10013MR818358
  36. [Lan1] Langlands, R.P.: On the Functional Equations Satisfied by Eisenstein Series, Lect. Notes in Math.544, Springer, Berlin, Heidelberg, New York, 1976. Zbl0332.10018MR579181
  37. [Lan2] Langlands, R.P.: Letter to A. Borel dated October 25, 1972. 
  38. [Lau] Laumon, G.: Cohomology with compact support of Drinfeld modular varieties. Part I. Publication de l'Université de Paris-Sud, 1991. 
  39. [MW] Mœglin, C. and Waldspurger, J-L.: Déeompositionspectraleet séries d'Eisenstein, Progress in Math.113, Birkhäuser, Boston, Basel, Berlin, 1994. Zbl0794.11022
  40. [Mü] Müller, W.: The trace class conjecture in the theory of automorphic forms, Annals of Math.130 (1989) 473-529. Zbl0701.11019MR1025165
  41. [OW] Osborne, M.S. and Warner, G.: The Selberg trace formula II: Partition, reduction, truncation, Pacific J. Math.106 (1983) 307-496. Zbl0515.22013MR699915
  42. [Ro] Rogawski, J.D.: Trace Paley Wiener theorem in the twisted case, Transactions AMS309 (1988) 215-229. Zbl0663.22011MR957068
  43. [RS1] Rohlfs, J. and Speh, B.: Automorphic representations and Lefschetz numbers, Ann. Sci. Ec. Norm. Sup.4e série 22 (1989) 473-499. Zbl0689.22005MR1011990
  44. [RS2] Rohlfs, J. and Speh, B.: Lefschetz numbers and twisted stabilized orbital integrals, Math. Ann.296 (1993) 191-214. Zbl0808.11039MR1219899
  45. [RS3] Rohlfs, J. and Speh, B.: On the cuspidal cohomology of arithmetic groups and cyclic base change, Math. Nach.158 (1992) 99-108. Zbl0780.11030MR1235298
  46. [Sch] Schwermer, J.: Cohomology of arithmetic groups, automorphic forms and L-functions, Cohomology of Arithmetic Groups and Automorphic forms, Lect. Notes in Math.1447, Springer, Berlin, Heidelberg, New York, 1990. Zbl0715.11028MR1082960
  47. [Sil] Silberger, A.: Isogeny restriction of irreducible admissible representations are finite direct sums of irreducible admissible representations, Proc. AMS73 (1979) 263-264. Zbl0368.22009MR516475
  48. [T] Tits, J.: Algebraic and abstract simple groups, Annals of Math.80 (1964) 313-329. Zbl0131.26501MR164968
  49. [VZ] Vogan, D. and Zuckerman, G.J.: Unitary representations with non-zero cohomology, Compositio Math.53 (1984) 51-90. Zbl0692.22008MR762307
  50. [W] Wallach, N.: On the constant term of a square-integrable automorphic form, Operator algebras and group representations II, Monographs and Studies in Math.17 (1984) 227-237, Pitman, London. Zbl0554.22004MR733320

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.