Automorphic representations and Lefschetz numbers

Jürgen Rohlfs; Birgit Speh

Annales scientifiques de l'École Normale Supérieure (1989)

  • Volume: 22, Issue: 3, page 473-499
  • ISSN: 0012-9593

How to cite

top

Rohlfs, Jürgen, and Speh, Birgit. "Automorphic representations and Lefschetz numbers." Annales scientifiques de l'École Normale Supérieure 22.3 (1989): 473-499. <http://eudml.org/doc/82258>.

@article{Rohlfs1989,
author = {Rohlfs, Jürgen, Speh, Birgit},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {multiplicities of automorphic representations; Lefschetz numbers; semisimple non compact Lie group; discrete arithmetically defined torsion-free subgroup of finite covolume; sheaf cohomology; irreducible unitary principal series representation},
language = {eng},
number = {3},
pages = {473-499},
publisher = {Elsevier},
title = {Automorphic representations and Lefschetz numbers},
url = {http://eudml.org/doc/82258},
volume = {22},
year = {1989},
}

TY - JOUR
AU - Rohlfs, Jürgen
AU - Speh, Birgit
TI - Automorphic representations and Lefschetz numbers
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1989
PB - Elsevier
VL - 22
IS - 3
SP - 473
EP - 499
LA - eng
KW - multiplicities of automorphic representations; Lefschetz numbers; semisimple non compact Lie group; discrete arithmetically defined torsion-free subgroup of finite covolume; sheaf cohomology; irreducible unitary principal series representation
UR - http://eudml.org/doc/82258
ER -

References

top
  1. [B 1] A. BOREL, Introduction aux groupes arithmétiques, Paris, Hermann, 1969. Zbl0186.33202MR39 #5577
  2. [B 2] A. BOREL, Stable Real Cohomology of Arithmetic Groups II, In : J. HANO et al. Eds. Manifolds and Lie groups (Progress in Math. Vol. 14, Boston, Basel, Stuttgart : Birkhöuser, 1981, pp. 21-25). Zbl0483.57026MR83h:22023
  3. [B 3] A. BOREL, Compact Clifford-Klein Forms of Symmetric Spaces (Topology, Vol. 2, 1963, pp. 111-122). Zbl0116.38603MR26 #3823
  4. [B-M] D. BARBASCH and H. MOSCOVICI, L2-Index and the Selberg Trace Formula (J. Funct. Anal., Vol. 53, N° 2, 1983, pp. 151-201). Zbl0537.58039MR85j:58137
  5. [B-S] A. BOREL and J.-P. SERRE, Théorèmes de finitude en cohomologie galoisienne (Comment. Math. Helv., Vol. 39, 1964, pp. 111-196). Zbl0143.05901MR31 #5870
  6. [B-W] A. BOREL and N. WALLACH, Continuous Cohomology, Discrete Subgroups and Representations of Reductive Groups (Annals of Math. Studies, Princeton, University Press, 1960). Zbl0443.22010
  7. [Bou] N. BOURBAKI, Groupes et algèbres de Lie, Paris, Hermann, 1968. 
  8. [C] R. W. CARTER, Simple Groups of Lie Type, London, New York, Sydney, Toronto, J. Wiley & Sons 1972. Zbl0248.20015MR53 #10946
  9. [Cl 1] L. CLOZEL, On Limit Multiplicities of Discrete Series Representations in the Space of Automorphic Forms (Invent. math., Vol. 83, 1986, pp. 265-284. Zbl0582.22012MR87g:22012
  10. [Cl 2] L. CLOZEL, On the Cuspidal Cohomology of Arithmetic Subgroups of SL (2n) and the First Betti Number of Arithmetic 3-Manifolds (Duke. Math. J., Vol. 55, 1987, pp. 475-486). Zbl0648.22007MR88m:22022
  11. [DG-W] D. DE GEORGE and N. WALLACH, Limit Formulas for Multiplicities in L2 (Γ) (Ann. of Math., Vol. 107, 1978, pp. 133-150). Zbl0397.22007MR58 #11231
  12. [E] T. J. ENRIGHT, Relative Lie Algebra Cohomology and Unitary Representations of Complex Lie Groups (Duke. Math. J., Vol. 46, 1979, pp. 513-525). Zbl0427.22010MR81i:22007
  13. [H 1] G. HARDER, On the Cohomology of SL2 (D), In : Lie Groups and their Representations (Proc. of the Summer School on Group Repres., London, Hilger, 1975, pp. 139-150). Zbl0395.57028MR54 #12977
  14. [H 2] G. HARDER, A Gauss-Bonnet Theorem for Discrete Arithmetically Defined Groups (Ann. Scient. Ec. Norm. Sup., (4), 1971, pp. 409-455). Zbl0232.20088MR46 #8255
  15. [H-Ch] HARISH-CHANDRA, Automorphic Forms on Semisimple Lie Groups (Lecture Notes in Math., Vol. 62, Berlin, Heidelberg, New York, Springer Verlag, 1968). Zbl0186.04702MR38 #1216
  16. [He] S. HELGASON, Differential Geometry, Lie Groups, and Symmetric Spaces New York, San Francisco, London, Academic Press, 1978. Zbl0451.53038MR80k:53081
  17. [J-L] H. JACQUET and R. P. LANGLANDS, Automorphic Forms on Gl (2) (Lecture Notes in Math., Vol. 114, Berlin, Heidelberg, New York, Springer Verlag, 1970). Zbl0236.12010MR53 #5481
  18. [K-Z] A. W. KNAPP and G. J. ZUCKERMAN, Classification of Irreducible Tempered Representations of Semisimple Groups (Ann. of Math., Vol. 116, 1982, pp. 389-501). Zbl0516.22011MR84h:22034a
  19. [K] B. KOSTANT, Lie Algebra Cohomology and the Generalized Borel-Bott Theorem (Ann. of Math., Vol. 74, 1961, pp. 329-387). Zbl0134.03501MR26 #265
  20. [L 1] R. P. LANGLANDS, Dimensions of Spaces of Automorphic Forms (Proc. Symp. Pure Math. IX, A.M.S., 1966, pp. 253-257). Zbl0215.11802MR35 #3010
  21. [L 2] R. P. LANGLANDS, Basse Change for Gl (2), Annals of math. studies, Princeton, University Press, 1980. Zbl0444.22007
  22. [La] J.-P. LABESSE, Cusp Cohomology for Arithmetic Groups, Lecture at the Conference Darstellungstheorie reduktiver Lie-Gruppen und automorphe Darstellungen, Mathematisches Forschungsinstitut Oberwolfach, 1987. 
  23. [La-S] J.-P. LABESSE and J. SCHWERMER, On Liftings and Cusp Cohomology of Arithmetic Groups (Invent. math., Vol. 83, 1986, pp. 383-401). Zbl0581.10013MR87g:11060
  24. [Le-S] R. LEE and J. SCHWERMER, The Lefschetz Number of an Involution on the Space of Harmonic Cusp Forms of Sl3 (Invent. math., Vol. 73, 1983, pp. 189-239). Zbl0525.10014MR84k:22016
  25. [M] H. MINKOWSKI, Gesammelte Abhandlungen I, Leipzig, Berlin, Teubner. 
  26. [R 1] J. ROHLFS, The Lefschetz Number of an Involution on the Space of Classes of Positive Definite Quadratic Forms (Comment. Math. Helv., Vol. 56, 1981, pp. 272-296). Zbl0474.10019MR83a:10037
  27. [R 2] J. ROHLFS, On the Cohomology of the Bianchi Modular Groups (Math. Z., Vol. 188, 1985, pp. 253-269). Zbl0535.20028MR86e:11042
  28. [R 3] J. ROHLFS, Lefschetz Numbers for Arithmetic Groups (in preparation). Zbl0762.11023
  29. [R-S 1] J. ROHLFS and B. SPEH, A Cohomological Method for the Determination of Limit Multiplicities (Lecture Notes in Math., Vol. 1243, 1987, pp. 262-272). Zbl0631.22011MR88f:22048
  30. [R-S 2] J. ROHLFS and B. SPEH, On Limit Multiplicities of Representations with Cohomology in the Cuspidal Spectrum (Duke Math. Journ., Vol. 55, 1987, pp. 199-211). Zbl0626.22008MR88k:22010
  31. [R-S 3] J. ROHLFS and B. SPEH, Representations with Cohomology in the Discrete Spectrum of Subgroups of SO (n, 1) (ℤ) and Lefschetz Numbers, (Ann. scient. Ec. Norm. Sup., 4e série, T. 20, 1987, pp. 89-136). Zbl0626.22010MR88h:22019
  32. [Sa] G. SAVIN, Limit Multiplicities of Cusp Forms (Invent. math., Vol. 95, 1989, pp. 149-159). Zbl0673.22003MR90c:22035
  33. [Sch] W. SCHARLAU, Quadratic and Hermitian Forms, Berlin, Heidelberg, New York, Tokyo, Springer Verlag, 1985. Zbl0584.10010MR86k:11022
  34. [Sh] G. SHIMURA, Sur les intégrales attachées aux formes automorphes (J. Math. Soc. Japan, Vol. 11, No. 4, 1959, pp. 291-311). Zbl0090.05503MR22 #11126
  35. [Se] J.-P. SERRE, Cohomologie Galoisienne (Lecture notes in Mathematics, No. 5, Berlin, Heidelberg, New York, Springer Verlag). Zbl0136.02801
  36. [Sp] B. SPEH, Unitary Representations of Gl (n, ℝ) with Non-Trivial (g, ŧ)-Cohomology (Invent. math., Vol. 71, 1983, pp. 1-38). Zbl0505.22015MR84k:22024
  37. [V-Z] D. VOGAN and G. ZUCKERMAN, Unitary Representations with Nonzero Cohomology (Compositio. Math., Vol. 53, 1984, pp. 51-90). Zbl0692.22008MR86k:22040
  38. [Z] D. P. ŽELOBENKO, The Analysis of Irreducibility in a Class of Elementary Representations of a Complex Semisimple Lie Group (Math. U.S.S.R. Izvestija, 2, 1968, pp. 105-128). Zbl0205.04404

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.