On dynamic feedback linearization of four-dimensional affine control systems with two inputs

Jean-Baptiste Pomet

ESAIM: Control, Optimisation and Calculus of Variations (1997)

  • Volume: 2, page 151-230
  • ISSN: 1292-8119

How to cite

top

Pomet, Jean-Baptiste. "On dynamic feedback linearization of four-dimensional affine control systems with two inputs." ESAIM: Control, Optimisation and Calculus of Variations 2 (1997): 151-230. <http://eudml.org/doc/90505>.

@article{Pomet1997,
author = {Pomet, Jean-Baptiste},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {dynamic feedback linearization; coordinate transformations; infinite-dimensional manifolds; projective limit},
language = {eng},
pages = {151-230},
publisher = {EDP Sciences},
title = {On dynamic feedback linearization of four-dimensional affine control systems with two inputs},
url = {http://eudml.org/doc/90505},
volume = {2},
year = {1997},
}

TY - JOUR
AU - Pomet, Jean-Baptiste
TI - On dynamic feedback linearization of four-dimensional affine control systems with two inputs
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 1997
PB - EDP Sciences
VL - 2
SP - 151
EP - 230
LA - eng
KW - dynamic feedback linearization; coordinate transformations; infinite-dimensional manifolds; projective limit
UR - http://eudml.org/doc/90505
ER -

References

top
  1. [1] E. Aranda-Bricaire, C.H. Moog, J.-B. Pomet: An infinitesimal brunovsky form for nonlinear systems with applications to dynamic linearization, in Geometry in Nonlinear Control and Differential Inclusions, B. Jakuczyk, W. Respondek, and T. Rzezuchowski, eds., Banach Center Publications, 32, Warsaw, Poland, 1995, Institute of Mathematics, Polish Academy of Sciences, 19-33. Zbl0844.93024MR1364417
  2. [2] E. Aranda-Bricaire, C.H. Moog, J.-B. Pomet: A linear algebraic framework for dynamic feedback linearization, IEEE Trans. Automat. Control, 40, 1995, 127-132. Zbl0844.93025MR1344331
  3. [3] B. Bonnard: Feedback equivalence for nonlinear systems and the time-optimal control problem, SIAM J. on Control and Optim., 29, 1991, 1300-1321. Zbl0744.93033MR1132184
  4. [4] R.W. Brockett: Feedback invariants for nonlinear systems, in IFAC World Congress, Helsinki, 1978, Birkäuser. Zbl0457.93028
  5. [5] P. Brunovský: A classification of linear controllable systems, Kybernetica, 6, 1970, 176-188. Zbl0199.48202MR284247
  6. [6] R.L. Bryant, S.S. Chern, R.B. Gardner, H.L. Goldschmitt, P.A. Griffiths: Exterior Differential Systems, Mathematical Sciences Research Institute Publications 18, Springer-Verlag, 1991. Zbl0726.58002MR714337
  7. [7] B. Charlet, J. Lévine, R. Marino: Sufficient conditions for dynamic state feedback linearization, SIAM J. on Control and Optim., 29, 1991, 38-57. Zbl0739.93021MR1088218
  8. [8] M. Fliess, J. Lévine, P. Martin, P. Rouchon: On differentially flat nonlinear systems, in Nonlinear Control Systems Design, M. Fliess, ed., Pergamon Press, 1992, 408-412. MR1181303
  9. [9] M. Fliess, J. Lévine, P. Martin, P. Rouchon: Linéarisation par bouclage dynamique et transformations de Lie-Bäcklund, C. R. Acad. Sci., Paris, Série I, 317, 1993, 981-986. Zbl0796.93042MR1249373
  10. [10] M. Fliess, J. Lévine, P. Martin, P. Rouchon: Towards a new differential geometric setting in nonlinear control, in Proc. International Geometrical Coll., Moscow, 1993. 
  11. [11] M. Fliess, J. Lévine, P. Martin, P. Rouchon: Flatness and defect of nonlinear systems: Introductory theory and examples, Int. J. Control, 61, 1995, 1327-1361. Zbl0838.93022MR1613557
  12. [12] L.R. Hunt, R. Su, G. Meyer: Design for multi-input nonlinear systems, in Differential Geometric Control Theory, R. Brockett, ed., Birkhäuser, 1983, 258-298. Zbl0543.93026MR708508
  13. [13] B. Jakubczyk: Equivalence and invariants of nonlinear control systems, in Nonlinear Controllability and Optimal Control, H.J. Sussmann, ed., Marcel Dekker, New-York, 1990. Zbl0712.93027MR1061386
  14. [14] B. Jakubczyk: Dynamic feedback equivalence of nonlinear control systems. Preprint, 1994. 
  15. [15] B. Jakubczyk, W. Respondek: On linearization of control systems, Bull. Acad. Polonaise Sci. Ser. Sci. Math., 28, 1980, 517-522. Zbl0489.93023MR629027
  16. [16] C. Leleu, J.-B. Pomet: A package in "maple" to decide on (x, u)-dynamic linearizability of control systems with four states and two inputs, rapport de recherche, INRIA, 1997, to appear. (URL: http://www.inria.fr/publications-eng.html). 
  17. [17] J. Lévine, R. Marino: On dynamic feedback linearization on ℝ, in 29th IEEE Conf. on Decision & Control, 1990, 2088-2090. 
  18. [18] P. Martin: Contribution à l'étude des systèmes différentiellement plats, PhD thesis, L'École Nationale Supérieure des Mines de Paris, 1992. 
  19. [19] J.-B. Pomet: A differential geometric setting for dynamic equivalence and dynamic linearization, in Geometry in Nonlinear Control and Differential Inclusions, B. Jakuczyk, W. Respondek, T. Rzezuchowski, eds., Banach Center Publications 32, Warsaw, Poland, 1995, Institute of Mathematics, Polish Academy of Sciences, 319-339 Zbl0838.93019MR1364437
  20. [20] J.-B. Pomet, C. H. Moog, E. Aranda-Bricaire: A non-exact Brunovsky form and dynamic feedback linearization, in 31st IEEE Conf. on Decision and Control, Tucson, U.S.A., Dec. 1992, 2012-2017. 
  21. [21] J.-F. Pommaret: Partial Differential Equations and Group Theory, Mathematics and its Applications 293, Kluwer Academic Publishers, Dordrecht, Boston, London, 1994. Zbl0808.35002MR1308976
  22. [22] P. Rouchon: Necessary condition and genericity of dynamic feedback linearization, Journal of Mathematical Systems, Estimation, and Control, 4, 1994, 1-14. Zbl0818.93012MR1646298
  23. [23] W. Shadwick: Absolute equivalence and dynamic feedback linearization, Systems & Control Lett., 15, 1990, 35-39. Zbl0704.93037MR1065346
  24. [24] W. Sluis: A necessary condition for dynamic feedback linearization, Systems & Control Lett., 21, 1993, 277-283. Zbl0793.93070MR1241406
  25. [25] S. Sternberg: Lectures on Differential Geometry, Chelsea Publishing Co., New York, 2nd ed., 1983. Zbl0518.53001MR891190

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.