On dynamic feedback linearization of four-dimensional affine control systems with two inputs
ESAIM: Control, Optimisation and Calculus of Variations (1997)
- Volume: 2, page 151-230
- ISSN: 1292-8119
Access Full Article
topHow to cite
topPomet, Jean-Baptiste. "On dynamic feedback linearization of four-dimensional affine control systems with two inputs." ESAIM: Control, Optimisation and Calculus of Variations 2 (1997): 151-230. <http://eudml.org/doc/90505>.
@article{Pomet1997,
author = {Pomet, Jean-Baptiste},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {dynamic feedback linearization; coordinate transformations; infinite-dimensional manifolds; projective limit},
language = {eng},
pages = {151-230},
publisher = {EDP Sciences},
title = {On dynamic feedback linearization of four-dimensional affine control systems with two inputs},
url = {http://eudml.org/doc/90505},
volume = {2},
year = {1997},
}
TY - JOUR
AU - Pomet, Jean-Baptiste
TI - On dynamic feedback linearization of four-dimensional affine control systems with two inputs
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 1997
PB - EDP Sciences
VL - 2
SP - 151
EP - 230
LA - eng
KW - dynamic feedback linearization; coordinate transformations; infinite-dimensional manifolds; projective limit
UR - http://eudml.org/doc/90505
ER -
References
top- [1] E. Aranda-Bricaire, C.H. Moog, J.-B. Pomet: An infinitesimal brunovsky form for nonlinear systems with applications to dynamic linearization, in Geometry in Nonlinear Control and Differential Inclusions, B. Jakuczyk, W. Respondek, and T. Rzezuchowski, eds., Banach Center Publications, 32, Warsaw, Poland, 1995, Institute of Mathematics, Polish Academy of Sciences, 19-33. Zbl0844.93024MR1364417
- [2] E. Aranda-Bricaire, C.H. Moog, J.-B. Pomet: A linear algebraic framework for dynamic feedback linearization, IEEE Trans. Automat. Control, 40, 1995, 127-132. Zbl0844.93025MR1344331
- [3] B. Bonnard: Feedback equivalence for nonlinear systems and the time-optimal control problem, SIAM J. on Control and Optim., 29, 1991, 1300-1321. Zbl0744.93033MR1132184
- [4] R.W. Brockett: Feedback invariants for nonlinear systems, in IFAC World Congress, Helsinki, 1978, Birkäuser. Zbl0457.93028
- [5] P. Brunovský: A classification of linear controllable systems, Kybernetica, 6, 1970, 176-188. Zbl0199.48202MR284247
- [6] R.L. Bryant, S.S. Chern, R.B. Gardner, H.L. Goldschmitt, P.A. Griffiths: Exterior Differential Systems, Mathematical Sciences Research Institute Publications 18, Springer-Verlag, 1991. Zbl0726.58002MR714337
- [7] B. Charlet, J. Lévine, R. Marino: Sufficient conditions for dynamic state feedback linearization, SIAM J. on Control and Optim., 29, 1991, 38-57. Zbl0739.93021MR1088218
- [8] M. Fliess, J. Lévine, P. Martin, P. Rouchon: On differentially flat nonlinear systems, in Nonlinear Control Systems Design, M. Fliess, ed., Pergamon Press, 1992, 408-412. MR1181303
- [9] M. Fliess, J. Lévine, P. Martin, P. Rouchon: Linéarisation par bouclage dynamique et transformations de Lie-Bäcklund, C. R. Acad. Sci., Paris, Série I, 317, 1993, 981-986. Zbl0796.93042MR1249373
- [10] M. Fliess, J. Lévine, P. Martin, P. Rouchon: Towards a new differential geometric setting in nonlinear control, in Proc. International Geometrical Coll., Moscow, 1993.
- [11] M. Fliess, J. Lévine, P. Martin, P. Rouchon: Flatness and defect of nonlinear systems: Introductory theory and examples, Int. J. Control, 61, 1995, 1327-1361. Zbl0838.93022MR1613557
- [12] L.R. Hunt, R. Su, G. Meyer: Design for multi-input nonlinear systems, in Differential Geometric Control Theory, R. Brockett, ed., Birkhäuser, 1983, 258-298. Zbl0543.93026MR708508
- [13] B. Jakubczyk: Equivalence and invariants of nonlinear control systems, in Nonlinear Controllability and Optimal Control, H.J. Sussmann, ed., Marcel Dekker, New-York, 1990. Zbl0712.93027MR1061386
- [14] B. Jakubczyk: Dynamic feedback equivalence of nonlinear control systems. Preprint, 1994.
- [15] B. Jakubczyk, W. Respondek: On linearization of control systems, Bull. Acad. Polonaise Sci. Ser. Sci. Math., 28, 1980, 517-522. Zbl0489.93023MR629027
- [16] C. Leleu, J.-B. Pomet: A package in "maple" to decide on (x, u)-dynamic linearizability of control systems with four states and two inputs, rapport de recherche, INRIA, 1997, to appear. (URL: http://www.inria.fr/publications-eng.html).
- [17] J. Lévine, R. Marino: On dynamic feedback linearization on ℝ, in 29th IEEE Conf. on Decision & Control, 1990, 2088-2090.
- [18] P. Martin: Contribution à l'étude des systèmes différentiellement plats, PhD thesis, L'École Nationale Supérieure des Mines de Paris, 1992.
- [19] J.-B. Pomet: A differential geometric setting for dynamic equivalence and dynamic linearization, in Geometry in Nonlinear Control and Differential Inclusions, B. Jakuczyk, W. Respondek, T. Rzezuchowski, eds., Banach Center Publications 32, Warsaw, Poland, 1995, Institute of Mathematics, Polish Academy of Sciences, 319-339 Zbl0838.93019MR1364437
- [20] J.-B. Pomet, C. H. Moog, E. Aranda-Bricaire: A non-exact Brunovsky form and dynamic feedback linearization, in 31st IEEE Conf. on Decision and Control, Tucson, U.S.A., Dec. 1992, 2012-2017.
- [21] J.-F. Pommaret: Partial Differential Equations and Group Theory, Mathematics and its Applications 293, Kluwer Academic Publishers, Dordrecht, Boston, London, 1994. Zbl0808.35002MR1308976
- [22] P. Rouchon: Necessary condition and genericity of dynamic feedback linearization, Journal of Mathematical Systems, Estimation, and Control, 4, 1994, 1-14. Zbl0818.93012MR1646298
- [23] W. Shadwick: Absolute equivalence and dynamic feedback linearization, Systems & Control Lett., 15, 1990, 35-39. Zbl0704.93037MR1065346
- [24] W. Sluis: A necessary condition for dynamic feedback linearization, Systems & Control Lett., 21, 1993, 277-283. Zbl0793.93070MR1241406
- [25] S. Sternberg: Lectures on Differential Geometry, Chelsea Publishing Co., New York, 2nd ed., 1983. Zbl0518.53001MR891190
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.